2,419 research outputs found

    Polarized 3 parton production in inclusive DIS at small x

    Get PDF
    Azimuthal angular correlations between produced hadrons/jets in high energy collisions are a sensitive probe of the dynamics of QCD at small x. Here we derive the triple differential cross section for inclusive production of 3 polarized partons in DIS at small x using the spinor helicity formalism. The target proton or nucleus is described using the Color Glass Condensate (CGC) formalism. The resulting expressions are used to study azimuthal angular correlations between produced partons in order to probe the gluon structure of the target hadron or nucleus. Our analytic expressions can also be used to calculate the real part of the Next to Leading Order (NLO) corrections to di-hadron production in DIS by integrating out one of the three final state partons.Comment: 5 pages, 6 figures; version accepted for publication in Physics Letters

    Broadening of H2_2O rotational lines by collision with He atoms at low temperature

    Get PDF
    We report pressure broadening coefficients for the 21 electric-dipole transitions between the eight lowest rotational levels of ortho-H2_2O and para-H2_2O molecules by collisions with He at temperatures from 20 to 120 K. These coefficients are derived from recently published experimental state-to-state rate coefficients for H2_2O:He inelastic collisions, plus an elastic contribution from close coupling calculations. The resulting coefficients are compared to the available experimental data. Mostly due to the elastic contribution, the pressure broadening coefficients differ much from line to line, and increase markedly at low temperature. The present results are meant as a guide for future experiments and astrophysical observations.Comment: 2 figures, 2 table

    The broad away side of azimuthal correlations: 3 vs 2 final state particles in high energy nuclear collisions

    Full text link
    In high energy heavy ion collisions at RHIC there are important aspects of the medium induced dynamics, that are still not well understood. In particular, there is a broadening and even a double hump structure of the away-side peak appearing in azimuthal correlation studies in Au+Au collisions which is absent in p+p collisions at the same energies. These features are already present but suppressed in p+p collisions: 2 to 3 parton processes produce such structures but are suppressed with respect to 2 to 2 processes. We argue that in A+A collisions the different geometry for the trajectories of 3 as opposed to 2 particles in the final state, together with the medium induced energy loss effects on the different cross sections, create a scenario that enhances processes with 3 particles in the final state, which gives on average this double hump structure.Comment: Prepared for the 5th International Workshop on High-pT Physics at LHC, ICN-UNAM, 27 Sep.-1 Oct, 201

    Three and two-hadron correlations in \sqrt{s_{NN}}=200 GeV proton-proton and nucleus-nucleus collisions

    Full text link
    We compare the azimuthal correlations arising from three and two hadron production in high energy proton-proton and nucleus-nucleus collisions at \sqrt{s_{NN}}=200 GeV, using the leading order matrix elements for two-to-three and two-to-two parton-processes in perturbative QCD. We first compute the two and three hadron production cross sections in mid-rapidity proton-proton collisions. Then we consider Au + Au collisions including parton energy loss using the modified fragmentation function approach. By examining the geometrical paths the hard partons follow through the medium, we show that the two away-side partons produced in two-to-three processes have in average a smaller and a greater path length than the average path length of the away-side parton in two-to-two processes. Therefore there is a large probability that in the former processes one of the particles escapes while the other gets absorbed. This effect leads to an enhancement in the azimuthal correlations of the two-to-three with respect to the two-to-two parton-processes when comparing to the same processes in proton-proton collisions since in average the particle with the shortest path length looses less energy with respect to the away side particle in two-to-two processes. We argue that this phenomenon may be responsible for the shape of the away-side in azimuthal correlations observed in mid-rapidity Au + Au collisions at RHIC.Comment: 4 pages, 2 figure

    A study of cyclonic activity in the North Atlantic for the 2005 versus 2020 season

    Get PDF
    Ponencia presentada en: XII Congreso de la Asociación Española de Climatología celebrado en Santiago de Compostela entre el 19 y el 21 de octubre de 2022.Over the last two decades, the North Atlantic ocean basin has experienced record-breaking hurricane seasons with regards to storm frequency and intensity. This short study examines the ocean and atmospheric characteristics of the two most active hurricane seasons on record, the 2005 and 2020 seasons. Accumulated cyclone energy, sea surface temperature, sea-level pressure and wind shear data in the main development region of the North Atlantic are compared between the two record-breaking seasons. Results of time series analysis show that 2005 was the hurricane season with the highest accumulated cyclone energy index, while 2020 was the 4th highest of 55 seasons analyzed. Results of spatial analysis of sea surface temperature anomalies exhibit that 2005 had a slightly higher average surface temperature than 2020 in the main development region of tropical cyclones, and that 2005 had higher temperatures in the central region of the study area while 2020 had higher surface temperatures in the southern Caribbean region. Comparisons between the sea level pressure anomalies show that 2005 had a slightly lower average pressure than 2020, with 2005 exhibiting lower anomalies in the northern area and 2020 showing anomalous pressure patterns in the eastern part of the main development region. When wind shear anomalies are examined, we found that 2020 had a lower average wind shear than 2005, a factor that could explain why 2020 had a higher number of tropical cyclones. Overall our results suggest that both 2005 and 2020 seasons had similar ideal ocean-atmospheric conditions for higher tropical cyclone activity

    How different Fermi surface maps emerge in photoemission from Bi2212

    Full text link
    We report angle-resolved photoemission spectra (ARPES) from the Fermi energy (EFE_F) over a large area of the (kx,kyk_x,k_y) plane using 21.2 eV and 32 eV photons in two distinct polarizations from an optimally doped single crystal of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (Bi2212), together with extensive first-principles simulations of the ARPES intensities. The results display a wide-ranging level of accord between theory and experiment and clarify how myriad Fermi surface (FS) maps emerge in ARPES under various experimental conditions. The energy and polarization dependences of the ARPES matrix element help disentangle primary contributions to the spectrum due to the pristine lattice from those arising from modulations of the underlying tetragonal symmetry and provide a route for separating closely placed FS sheets in low dimensional materials.Comment: submitted to PR
    • …
    corecore