2,148 research outputs found
Therapeutic targeting of 3’,5’-cyclic nucleotide phosphodiesterases: inhibition and beyond
Phosphodiesterases (PDEs), enzymes that degrade 3′,5′-cyclic nucleotides, are being pursued as therapeutic targets for several diseases, including those affecting the nervous system, the cardiovascular system, fertility, immunity, cancer and metabolism. Clinical development programmes have focused exclusively on catalytic inhibition, which continues to be a strong focus of ongoing drug discovery efforts. However, emerging evidence supports novel strategies to therapeutically target PDE function, including enhancing catalytic activity, normalizing altered compartmentalization and modulating post-translational modifications, as well as the potential use of PDEs as disease biomarkers. Importantly, a more refined appreciation of the intramolecular mechanisms regulating PDE function and trafficking is emerging, making these pioneering drug discovery efforts tractable
Therapeutic targeting of 3’,5’-cyclic nucleotide phosphodiesterases: inhibition and beyond
Phosphodiesterases (PDEs), enzymes that degrade 3′,5′-cyclic nucleotides, are being pursued as therapeutic targets for several diseases, including those affecting the nervous system, the cardiovascular system, fertility, immunity, cancer and metabolism. Clinical development programmes have focused exclusively on catalytic inhibition, which continues to be a strong focus of ongoing drug discovery efforts. However, emerging evidence supports novel strategies to therapeutically target PDE function, including enhancing catalytic activity, normalizing altered compartmentalization and modulating post-translational modifications, as well as the potential use of PDEs as disease biomarkers. Importantly, a more refined appreciation of the intramolecular mechanisms regulating PDE function and trafficking is emerging, making these pioneering drug discovery efforts tractable
A beam-beam monitoring detector for the MPD experiment at NICA
The Multi-Purpose Detector (MPD) is to be installed at the Nuclotron Ion
Collider fAcility (NICA) of the Joint Institute for Nuclear Research (JINR).
Its main goal is to study the phase diagram of the strongly interacting matter
produced in heavy-ion collisions. These studies, while providing insight into
the physics of heavy-ion collisions, are relevant for improving our
understanding of the evolution of the early Universe and the formation of
neutron stars. In order to extend the MPD trigger capabilities, we propose to
include a high granularity beam-beam monitoring detector (BE-BE) to provide a
level-0 trigger signal with an expected time resolution of 30 ps. This new
detector will improve the determination of the reaction plane by the MPD
experiment, a key measurement for flow studies that provides physics insight
into the early stages of the reaction. In this work, we use simulated Au+Au
collisions at NICA energies to show the potential of such a detector to
determine the event plane resolution, providing further redundancy to the
detectors originally considered for this purpose namely, the Fast Forward
Detector (FFD) and the Hadron Calorimeter (HCAL). We also show our results for
the time resolution studies of two prototype cells carried out at the T10 beam
line at the CERN PS complex.Comment: 16 pages, 12 figures. Updated to published version with added
comments and correction
Inelastic collisions in molecular nitrogen at low temperature (2<T<50 K)
Theory and experiment are combined in a novel approach aimed at establishing a set of two-body state-to-state rates for elementary processes ij->lm in low temperature N2:N2 collisions involving the rotational states i, j, l, m. First, a set of 148 collision cross sections is calculated as a function of the collision energy at the converged close-coupled level via the MOLSCAT code, using a recent potential energy surface for N2–N2. Then, the corresponding rates for the range of 2<T<50 K are derived from the cross sections. The link between theory and experiment, aimed at assessing the calculated rates, is a master equation which accounts for the time evolution of rotational populations in a reference volume of gas in terms of the collision rates. In the experiment, the evolution of rotational populations is measured by Raman spectroscopy in a tiny reference volume 2E-3 mm3 of N2 traveling along the axis of a supersonic jet. The calculated collisional rates are assessed experimentally in the range of 4<T<35 K by means of the master equation, and then are scaled by averaging over a large set of experimental data. The scaled rates account accurately for the evolution of the rotational populations measured in a wide range of conditions. Accuracy of 10%
is estimated for the main scaled rates.This work has been supported by the Spanish Ministerio de EducaciĂłn y Ciencia, research Project Nos. FIS2004-02576, HF2004-232, ESP2004-21060-E, and ASTROCAM network. J.P.F. is indebted to the CSIC for an I3P grant.Peer reviewe
Is the effectivity of copper ions treatment of milk enough to block Mycobacterium avium subsp. paratuberculosis infection in calves?
Milk is an important transmission route of Mycobacterium avium subsp. paratuberculosis (MAP) for dairy calves. Given its resistance to pasteurization, alternative milk treatments are needed to control MAP transmission via milk. The present study reports the evaluation of a novel milk decontamination treatment based on copper ions as a means of preventing infection in dairy calves. Ten newborn calves were assigned to one of two experimental groups (n=5) which were studied for 1 year. The first group was fed milk naturally contaminated with MAP and the second one received the same milk but after being treated with copper ions. In both groups, milk MAP load was estimated. The progression of the infection was monitored monthly and at the end of the study, calves were euthanised, and tissue samples were examined both grossly and by histopathology. The treatment of milk with copper ions significantly reduced the number of viable MAP. Faecal shedding of MAP was observed in both study groups, but the calves fed naturally contaminated milk began to shed MAP earlier. Only calves fed copper-treated milk showed histopathological evidence consistent with MAP infection. The latter offers more questions than answers, and maybe the presence of a more tolerant and virulent MAP strain could be the final answer to this situation
Silicon intercalation into the graphene-SiC interface
In this work we use LEEM, XPEEM and XPS to study how the excess Si at the
graphene-vacuum interface reorders itself at high temperatures. We show that
silicon deposited at room temperature onto multilayer graphene films grown on
the SiC(000[`1]) rapidly diffuses to the graphene-SiC interface when heated to
temperatures above 1020. In a sequence of depositions, we have been able to
intercalate ~ 6 ML of Si into the graphene-SiC interface.Comment: 6 pages, 8 figures, submitted to PR
Symmetry breaking in commensurate graphene rotational stacking; a comparison of theory and experiment
Graphene stacked in a Bernal configuration (60 degrees relative rotations
between sheets) differs electronically from isolated graphene due to the broken
symmetry introduced by interlayer bonds forming between only one of the two
graphene unit cell atoms. A variety of experiments have shown that non-Bernal
rotations restore this broken symmetry; consequently, these stacking varieties
have been the subject of intensive theoretical interest. Most theories predict
substantial changes in the band structure ranging from the development of a Van
Hove singularity and an angle dependent electron localization that causes the
Fermi velocity to go to zero as the relative rotation angle between sheets goes
to zero. In this work we show by direct measurement that non-Bernal rotations
preserve the graphene symmetry with only a small perturbation due to weak
effective interlayer coupling. We detect neither a Van Hove singularity nor any
significant change in the Fermi velocity. These results suggest significant
problems in our current theoretical understanding of the origins of the band
structure of this material.Comment: 7 pages, 6 figures, submitted to PR
A wide band gap metal-semiconductor-metal nanostructure made entirely from graphene
A blueprint for producing scalable digital graphene electronics has remained
elusive. Current methods to produce semiconducting-metallic graphene networks
all suffer from either stringent lithographic demands that prevent
reproducibility, process-induced disorder in the graphene, or scalability
issues. Using angle resolved photoemission, we have discovered a unique one
dimensional metallic-semiconducting-metallic junction made entirely from
graphene, and produced without chemical functionalization or finite size
patterning. The junction is produced by taking advantage of the inherent,
atomically ordered, substrate-graphene interaction when it is grown on SiC, in
this case when graphene is forced to grow over patterned SiC steps. This
scalable bottomup approach allows us to produce a semiconducting graphene strip
whose width is precisely defined within a few graphene lattice constants, a
level of precision entirely outside modern lithographic limits. The
architecture demonstrated in this work is so robust that variations in the
average electronic band structure of thousands of these patterned ribbons have
little variation over length scales tens of microns long. The semiconducting
graphene has a topologically defined few nanometer wide region with an energy
gap greater than 0.5 eV in an otherwise continuous metallic graphene sheet.
This work demonstrates how the graphene-substrate interaction can be used as a
powerful tool to scalably modify graphene's electronic structure and opens a
new direction in graphene electronics research.Comment: 11 pages, 7 figure
- …