31 research outputs found

    Twisted magnetic flux tubes in the solar wind

    Full text link
    Magnetic flux tubes in the solar wind can be twisted as they are transported from the solar surface, where the tubes are twisted owing to photospheric motions. It is suggested that the twisted magnetic tubes can be detected as the variation of total (thermal+magnetic) pressure during their passage through observing satellite. We show that the total pressure of several observed twisted tubes resembles the theoretically expected profile. The twist of isolated magnetic tube may explain the observed abrupt changes of magnetic field direction at tube walls. We have also found some evidence that the flux tube walls can be associated with local heating of the plasma and elevated proton and electron temperatures. For the tubes aligned with the Parker spiral, the twist angle can be estimated from the change of magnetic field direction. Stability analysis of twisted tubes shows that the critical twist angle of the tube with a homogeneous twist is 700^0, but the angle can further decrease owing to the motion of the tube with regards to the solar wind stream. The tubes with a stronger twist are unstable to the kink instability, therefore they probably can not reach 1 AU.Comment: 4 pages, 4 figures, accepted in ApJ

    Rieger-type periodicity during solar cycles 14-24: estimation of dynamo magnetic field strength in the solar interior

    Full text link
    Solar activity undergoes a variation over time scales of several months known as Rieger-type periodicity, which usually occurs near maxima of sunspot cycles. An early analysis showed that the periodicity appears only in some cycles, and is absent in other cycles. But the appearance/absence during different cycles has not been explained. We performed a wavelet analysis of sunspot data from the Greenwich Royal Observatory and the Royal Observatory of Belgium during cycles 14-24. We found that the Rieger-type periods occur in all cycles, but they are cycle-dependent: shorter periods occur during stronger cycles. Our analysis revealed a periodicity of 185-195 days during the weak cycles 14-15 and 24, and a periodicity of 155-165 days during the stronger cycles 16-23. We derived the dispersion relation of the spherical harmonics of the magnetic Rossby waves in the presence of differential rotation and a toroidal magnetic field in the dynamo layer near the base of the convection zone. This showed that the harmonic of fast Rossby waves with m=1 and n=4, where m (n) indicate the toroidal (poloidal) wavenumbers, respectively, perfectly fit with the observed periodicity. The variation of the toroidal field strength from weaker to stronger cycles may lead to the different periods found in those cycles, which explains the observed enigmatic feature of the Rieger-type periodicity. Finally, we used the observed periodicity to estimate the dynamo field strength during cycles 14-24. Our estimations suggest a field strength of 40 kG for the stronger cycles, and 20 kG for the weaker cycles.Comment: 23 pages, 4 figures, accepted in Ap

    Magnetic Rossby waves in the solar tachocline and Rieger-type periodicities

    Full text link
    Apart from the 11-year solar cycle, another periodicity around 155-160 days was discovered during solar cycle 21 in high energy solar flares, and its presence in sunspot areas and strong magnetic flux has been also reported. This periodicity has an elusive and enigmatic character, since it usually appears only near the maxima of solar cycles, and seems to be related with a periodic emergence of strong magnetic flux at the solar surface. Therefore, it is probably connected with the tachocline, a thin layer located near the base of the solar convection zone, where strong dynamo magnetic field is stored. We study the dynamics of Rossby waves in the tachocline in the presence of a toroidal magnetic field and latitudinal differential rotation. Our analysis shows that the magnetic Rossby waves are generally unstable and that the growth rates are sensitive to the magnetic field strength and to the latitudinal differential rotation parameters. Variation of the differential rotation and the magnetic field strength throughout the solar cycle enhance the growth rate of a particular harmonic in the upper part of the tachocline around the maximum of the solar cycle. This harmonic is symmetric with respect to the equator and has a period of 155-160 days. A rapid increase of the wave amplitude could give place to a magnetic flux emergence leading to observed periodicities in solar activity indicators related with magnetic flux.Comment: 34 pages, 5 figures, accepted in Ap

    Association between Tornadoes and Instability of Hosting Prominences

    Get PDF
    We studied the dynamics of all prominence tornadoes detected by the Solar Dynamics Observatory/Atmospheric Imaging Assembly from 2011 January 01 to December 31. In total, 361 events were identified during the whole year, but only 166 tornadoes were traced until the end of their lifetime. Out of 166 tornadoes, 80 (48%) triggered CMEs in hosting prominences, 83 (50%) caused failed coronal mass ejections (CMEs) or strong internal motion in the prominences, and only 3 (2%) finished their lifetimes without any observed activity. Therefore, almost all prominence tornadoes lead to the destabilization of their hosting prominences and half of them trigger CMEs. Consequently, prominence tornadoes may be used as precursors for CMEs and hence for space weather predictions.Comment: 16 pages, 5 figures, Accepted in Ap

    Statistical properties of coronal hole rotation rates: Are they linked to the solar interior?

    Full text link
    The present paper discusses results of a statistical study of the characteristics of coronal hole (CH) rotation in order to find connections to the internal rotation of the Sun. The goal is to measure CH rotation rates and study their distribution over latitude and their area sizes. In addition, the CH rotation rates are compared with the solar photospheric and inner layer rotational profiles. We study coronal holes observed within ±60\pm 60 latitude and longitude degrees from the solar disc centre during the time span from the 1 January 2013 to 20 April 2015, which includes the extended peak of solar cycle 24.We used data created by the Spatial Possibilistic Clustering Algorithm (SPoCA), which provides the exact location and characterisation of solar coronal holes using SDO=AIA 193 {\AA} channel images. The CH rotation rates are measured with four-hour cadence data to track variable positions of the CH geometric centre. North-south asymmetry was found in the distribution of coronal holes: about 60 percent were observed in the northern hemisphere and 40 percent were observed in the southern hemisphere. The smallest and largest CHs were present only at high latitudes. The average sidereal rotation rate for 540 examined CHs is 13:86(±0:05)13:86 (\pm 0:05) degrees/d. Conclusions. The latitudinal characteristics of CH rotation do not match any known photospheric rotation profile. The CH angular velocities exceed the photospheric angular velocities at latitudes higher than 35-40 degrees. According to our results, the CH rotation profile perfectly coincides with tachocline and the lower layers of convection zone at around 0.71 R⊙R_{\odot}; this indicates that CHs may be linked to the solar global magnetic field, which originates in the tachocline region.Comment: 8 pages, 8 figures, Accepted for publication in A&

    Solar Science with the Atacama Large Millimeter/Submillimeter Array — A New View of Our Sun

    Get PDF
    The Atacama Large Millimeter/submillimeter Array (ALMA) is a new powerful tool for observing the Sun at high spatial, temporal, and spectral resolution. These capabilities can address a broad range of fundamental scientific questions in solar physics. The radiation observed by ALMA originates mostly from the chromosphere—a complex and dynamic region between the photosphere and corona, which plays a crucial role in the transport of energy and matter and, ultimately, the heating of the outer layers of the solar atmosphere. Based on first solar test observations, strategies for regular solar campaigns are currently being developed. State-of-the-art numerical simulations of the solar atmosphere and modeling of instrumental effects can help constrain and optimize future observing modes for ALMA. Here we present a short technical description of ALMA and an overview of past efforts and future possibilities for solar observations at submillimeter and millimeter wavelengths. In addition, selected numerical simulations and observations at other wavelengths demonstrate ALMA’s scientific potential for studying the Sun for a large range of science cases
    corecore