3 research outputs found

    Prostate-specific membrane antigen expression in the vasculature of primary lung carcinomas associates with faster metastatic dissemination to the brain

    Get PDF
    Glioblastomas and brain metastases (BM) of solid tumours are the most common central nervous system neoplasms associated with very unfavourable prognosis. In this study, we report the association of prostate-specific membrane antigen (PSMA) with various clinical parameters in a large cohort of primary and secondary brain tumours. A tissue microarray containing 371 cases of ascending grades of gliomas pertaining to astrocytic origin and samples of 52 cases of primary lung carcinomas with matching BM with follow-up time accounting to 10.4 years was evaluated for PSMA expression using immunohistochemistry. In addition, PSMA expression was studied in BM arising from melanomas and breast carcinomas. Neovascular expression of PSMA was evident alongside with high expression in the proliferating microvasculature of glioblastomas when compared to the tumour cell expression. This result correlated with the results obtained from the in silico (cancer genome databases) analyses. In gliomas, only the vascular expression of PSMA associated with poor overall survival but not the tumour cell expression. In the matched primary lung cancers and their BM (n = 52), vascular PSMA expression in primary tumours associated with significantly accelerated metastatic dissemination to the brain with a tendency towards poor overall survival. Taken together, we report that the vascular expression of PSMA in the primary and secondary brain tumours globally associates with the malignant progression and poor outcome of the patients.Peer reviewe

    Chemotherapy treatment is associated with altered PD-L1 expression in lung cancer patients

    No full text
    OBJECTIVES: While the predictive value of programmed cell death ligand-1 (PD-L1) protein expression for immune checkpoint inhibitor therapy of lung cancer has been extensively studied, the impact of standard platinum-based chemotherapy on PD-L1 or programmed cell death-1 (PD-1) expression is unknown. The aim of this study was to determine the changes in PD-L1 expression of tumor cells (TC) and immune cells (IC), in PD-1 expression of IC, and in the amount of stromal mononuclear cell infiltration after platinum-based chemotherapy in patients with lung cancer. MATERIALS AND METHODS: We determined the amount of stromal mononuclear cells and PD-L1/PD-1 expressions by immunohistochemistry in bronchoscopic biopsy samples including 20 adenocarcinomas (ADC), 15 squamous cell carcinomas (SCC), 2 other types of non-small cell lung cancer, and 4 small cell lung cancers together with their corresponding surgical resection tissues after platinum-based chemotherapy. RESULTS: PD-L1 expression of TC decreased in ten patients (24.4%) and increased in three patients (7.32%) after neoadjuvant chemotherapy (p = 0.051). The decrease in PD-L1 expression, however, was significant only in patients who received cisplatin-gemcitabine combination (p = 0.020), while in the carboplatin-paclitaxel group, no similar tendency could be observed (p = 0.432). There was no difference between ADC and SCC groups. Neither PD-1 expression nor the amount of stromal IC infiltration showed significant changes after chemotherapy. CONCLUSIONS: This is the first study, in which both PD-L1 and PD-1 expression were analyzed together with the amount of stromal IC infiltration in different histological subtypes of lung cancer before and after platinum-based chemotherapy. Our results confirm that chemotherapy decreases PD-L1 expression of TC in a subset of patients, therefore, rebiopsy and re-evaluation of PD-L1 expression may be necessary for the indication of immune checkpoint inhibitor therapy
    corecore