72 research outputs found

    Microfluidics-based approaches to the isolation of African trypanosomes

    Get PDF
    African trypanosomes are responsible for significant levels of disease in both humans and animals. The protozoan parasites are free-living flagellates, usually transmitted by arthropod vectors, including the tsetse fly. In the mammalian host they live in the bloodstream and, in the case of human-infectious species, later invade the central nervous system. Diagnosis of the disease requires the positive identification of parasites in the bloodstream. This can be particularly challenging where parasite numbers are low, as is often the case in peripheral blood. Enriching parasites from body fluids is an important part of the diagnostic pathway. As more is learned about the physicochemical properties of trypanosomes, this information can be exploited through use of different microfluidic-based approaches to isolate the parasites from blood or other fluids. Here, we discuss recent advances in the use of microfluidics to separate trypanosomes from blood and to isolate single trypanosomes for analyses including drug screening

    Transition between Two Regimes Describing Internal Fluctuation of DNA in a Nanochannel

    Get PDF
    We measure the thermal fluctuation of the internal segments of a piece of DNA confined in a nanochannel about 50100 nm wide. This local thermodynamic property is key to accurate measurement of distances in genomic analysis. For DNA in 100 nm channels, we observe a critical length scale 10 m for the mean extension of internal segments, below which the de Gennes' theory describes the fluctuations with no fitting parameters, and above which the fluctuation data falls into Odijk's deflection theory regime. By analyzing the probability distributions of the extensions of the internal segments, we infer that folded structures of length 150250 nm, separated by 10 m exist in the confined DNA during the transition between the two regimes. For 50 nm channels we find that the fluctuation is significantly reduced since the Odijk regime appears earlier. This is critical for genomic analysis. We further propose a more detailed theory based on small fluctuations and incorporating the effects of confinement to explicitly calculate the statistical properties of the internal fluctuations. Our theory is applicable to polymers with heterogeneous mechanical properties confined in non-uniform channels. We show that existing theories for the end-to-end extension/fluctuation of polymers can be used to study the internal fluctuations only when the contour length of the polymer is many times larger than its persistence length. Finally, our results suggest that introducing nicks in the DNA will not change its fluctuation behavior when the nick density is below 1 nick per kbp DNA
    • …
    corecore