64 research outputs found

    Contribution of hepatic organic anion-transporting polypeptides to docetaxel uptake and clearance

    Get PDF
    The antimicrotubular agent docetaxel is a widely used chemotherapeutic drug for the treatment of multiple solid tumors and is predominantly dependent on hepatic disposition. In this study, we evaluated drug uptake transporters capable of transporting radiolabeled docetaxel. By screening an array of drug uptake transporters in HeLa cells using a recombinant vacciniabased method, five organic anion-transporting polypeptides (OATP) capable of docetaxel uptake were identified: OATP1A2, OATP1B1, OATP1B3, OATP1C1, and Oatp1b2. Kinetic analysis of docetaxel transport revealed similar kinetic parameters among hepatic OATP1B/1b transporters. An assessment of polymorphisms (SNPs) in SLCO1B1 and SLCO1B3 revealed that a number of OATP1B1 and OATP1B3 variants were associated with impaired docetaxel transport. A Transwell-based vectorial transport assay using MDCKII stable cells showed that docetaxel was transported significantly into the apical compartment of double-transfected (MDCKII-OATP1B1/MDR1 and MDCKII-OATP1B3/MDR1) cells compared with singletransfected (MDCKII-OATP1B1 and MDCKII-OATP1B3) cells (P \u3c 0.05) or control (MDCKII-Co) cells (P \u3c 0.001). In vivo docetaxel transport studies in Slco1b2-/- mice showed approximately \u3e5.5-fold higher plasma concentrations (P \u3c 0.01) and approximately 3-fold decreased liver-to-plasma ratio (P \u3c 0.05) of docetaxel compared with wild-type (WT) mice. The plasma clearance of docetaxel in Slco1b2-/- mice was 83% lower than WT mice (P \u3c 0.05). In conclusion, this study demonstrates the important roles of OATP1B transporters to the hepatic disposition and clearance of docetaxel, and supporting roles of these transporters for docetaxel pharmacokinetics

    Targeted next generation sequencing as a tool for precision medicine

    Get PDF
    Background: Targeted next-generation sequencing (NGS) enables rapid identification of common and rare genetic variation. The detection of variants contributing to therapeutic drug response or adverse effects is essential for implementation of individualized pharmacotherapy. Successful application of short-read based NGS to pharmacogenes with high sequence homology, nearby pseudogenes and complex structure has been previously shown despite anticipated technical challenges. However, little is known regarding the utility of such panels to detect copy number variation (CNV) in the highly polymorphic cytochrome P450 (CYP) 2D6 gene, or to identify the promoter (TA)7 TAA repeat polymorphism UDP glucuronosyltransferase (UGT) 1A1∗28. Here we developed and validated PGxSeq, a targeted exome panel for pharmacogenes pertinent to drug disposition and/or response. Methods: A panel of capture probes was generated to assess 422 kb of total coding region in 100 pharmacogenes. NGS was carried out in 235 subjects, and sequencing performance and accuracy of variant discovery validated in clinically relevant pharmacogenes. CYP2D6 CNV was determined using the bioinformatics tool CNV caller (VarSeq). Identified SNVs were assessed in terms of population allele frequency and predicted functional effects through in silico algorithms. Results: Adequate performance of the PGxSeq panel was demonstrated with a depth-of-coverage (DOC) ≥ 20× for at least 94% of the target sequence. We showed accurate detection of 39 clinically relevant gene variants compared to standard genotyping techniques (99.9% concordance), including CYP2D6 CNV and UGT1A1∗28. Allele frequency of rare or novel variants and predicted function in 235 subjects mirrored findings from large genomic datasets. A large proportion of patients (78%, 183 out of 235) were identified as homozygous carriers of at least one variant necessitating altered pharmacotherapy. Conclusions: PGxSeq can serve as a comprehensive, rapid, and reliable approach for the detection of common and novel SNVs in pharmacogenes benefiting the emerging field of precision medicine

    Polymorphisms in the CD28/CTLA4/ICOS genes: Role in malignant melanoma susceptibility and prognosis?

    Get PDF
    The appearance of vitiligo and spontaneous regression of the primary lesion in melanoma patients illustrate a relationship between tumor immunity and autoimmunity. T lymphocytes play a major role both in tumor immunity and autoimmunity. CD28, Cytotoxic T lymphocyte antigen 4 (CTLA4) and inducible costimulator (ICOS) molecules are important secondary signal molecules in the T lymphocyte activation. Single nucleotide polymorphisms (SNPs) in the CD28/CTLA4/ICOS gene region were reported to be associated with several autoimmune diseases including, type-1 diabetes, SLE, autoimmune thyroid diseases and celiac disease. In this study, we investigated the association of SNPs in the CD28, CTLA4 and ICOS genes with the risk of melanoma. We also assessed the prognostic effect of the different polymorphisms in melanoma patients. Twenty-four tagging SNPs across the three genes and four additional SNPs were genotyped in a cohort of 763 German melanoma patients and 734 healthy German controls. Influence on prognosis was determined in 587 melanoma cases belonging to stage I or II of the disease. In general, no differences in genotype or allele frequencies were detected between melanoma patients and controls. However, the variant alleles for two polymorphisms in the CD28 gene were differentially distributed in cases and controls. Similarly no association of any polymorphism with prognosis, except for the rs3181098 polymorphism in the CD28 gene, was observed. In addition, individuals with AA genotype for rs11571323 polymorphism in the ICOS gene showed reduced overall survival. However, keeping in view the correction for multiple hypothesis testing our results suggest that the polymorphisms in the CD28, CTLA4 and ICOS genes at least do not modulate risk of melanoma and nor do those influence the disease prognosis in the investigated population

    Tumour-draining axillary lymph nodes in patients with large and locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC): the crucial contribution of immune cells (effector, regulatory) and cytokines (TH1, TH2) to immune-mediated tumour cell death induced by NAC

    Get PDF
    Background The tumour microenvironment consists of malignant cells, stroma and immune cells. In women with large and locally advanced breast cancers (LLABCs) undergoing neoadjuvant chemotherapy (NAC), tumour-infiltrating lymphocytes (TILs), various subsets (effector, regulatory) and cytokines in the primary tumour play a key role in the induction of tumour cell death and a pathological complete response (pCR) with NAC. Their contribution to a pCR in nodal metastases, however, is poorly studied and was investigated. Methods Axillary lymph nodes (ALNs) (24 with and 9 without metastases) from women with LLABCs undergoing NAC were immunohistochemically assessed for TILs, T effector and regulatory cell subsets, NK cells and cytokine expression using labelled antibodies, employing established semi-quantitative methods. IBM SPSS statistical package (21v) was used. Non-parametric (paired and unpaired) statistical analyses were performed. Univariate and multivariate regression analyses were carried out to establish the prediction of a pCR and Spearman’s Correlation Coefficient was used to determine the correlation of immune cell infiltrates in ALN metastatic and primary breast tumours. Results In ALN metastases high levels of TILs, CD4+ and CD8+ T and CD56+ NK cells were significantly associated with pCRs.. Significantly higher levels of Tregs (FOXP3+, CTLA-4+) and CD56+ NK cells were documented in ALN metastases than in the corresponding primary breast tumours. CD8+ T and CD56+ NK cells showed a positive correlation between metastatic and primary tumours. A high % CD8+ and low % FOXP3+ T cells and high CD8+: FOXP3+ ratio in metastatic ALNs (tumour-free para-cortex) were associated with pCRs. Metastatic ALNs expressed high IL-10, low IL-2 and IFN-ϒ. Conclusions Our study has provided new data characterising the possible contribution of T effector and regulatory cells and NK cells and T helper1 and 2 cytokines to tumour cell death associated with NAC in ALNs

    Inhibitory Receptors Are Expressed by Trypanosoma cruzi-Specific Effector T Cells and in Hearts of Subjects with Chronic Chagas Disease

    Get PDF
    We had formerly demonstrated that subjects chronically infected with Trypanosoma cruzi show impaired T cell responses closely linked with a process of T cell exhaustion. Recently, the expression of several inhibitory receptors has been associated with T cell dysfunction and exhaustion. In this study, we have examined the expression of the cytotoxic T lymphocyte antigen 4 (CTLA-4) and the leukocyte immunoglobulin like receptor 1 (LIR-1) by peripheral T. cruzi antigen-responsive IFN-gamma (IFN-γ)-producing and total T cells from chronically T. cruzi-infected subjects with different clinical forms of the disease. CTAL-4 expression was also evaluated in heart tissue sections from subjects with severe myocarditis. The majority of IFN-γ-producing CD4+ T cells responsive to a parasite lysate preparation were found to express CTLA-4 but considerably lower frequencies express LIR-1, irrespective of the clinical status of the donor. Conversely, few IFN-γ-producing T cells responsive to tetanus and diphtheria toxoids expressed CTLA-4 and LIR-1. Polyclonal stimulation with anti-CD3 antibodies induced higher frequencies of CD4+CTAL-4+ T cells in patients with severe heart disease than in asymptomatic subjects. Ligation of CTLA-4 and LIR-1 with their agonistic antibodies, in vitro, reduces IFN-γ production. Conversely, CTLA-4 blockade did not improved IFN-γ production in response to T. cruzi antigens. Subjects with chronic T. cruzi infection had increased numbers of CD4+LIR-1+ among total peripheral blood mononuclear cells, relative to uninfected individuals and these numbers decreased after treatment with benznidazole. CTLA-4 was also expressed by CD3+ T lymphocytes infiltrating heart tissues from chronically infected subjects with severe myocarditis. These findings support the conclusion that persistent infection with T. cruzi leads to the upregulation of inhibitory receptors which could alter parasite specific T cell responses in the chronic phase of Chagas disease
    corecore