14 research outputs found

    Enzymatic removal of cellulose from cotton/polyester fabric blends

    Get PDF
    The production of light-weight polyester fabrics from a polyester/cotton blended fabric, by means of the enzymatic removal of the cellulosic part of the material, was investigated. The removal of cotton from the blended fabric yielded more than 80% of insoluble microfibrillar material by the combined action of high beating effects and cellulase hydrolysis.Other major features of this enzymatic process for converting cotton fibers into microfibrillar material are bath ratio, enzyme dosage and treatment time

    Large-scale production of cellulose-binding domains : adsorption studies using CBD-FITC conjugates

    Get PDF
    A method for the gram-scale production of cellulose-binding domains (CBD) through the proteolytic digestion of a commercial nzymatic preparation (Celluclast) was developed. The CBD obtained, isolated from Trichoderma reesei cellobiohydrolase I, is highly pure and heavily glycosylated. The purified peptide has a molecular weight of 8.43 kDa, comprising the binding module, a part of the linker, and about 30% glycosidic moiety. Its properties may thus be different from recombinant ones expressed in bacteria. CBDfluorescein isothiocyanate conjugates were used to study the CBD-cellulose interaction. The presence of fluorescent peptides adsorbed on crystalline and amorphous cellulose fibers suggests that amorphous regions have a higher concentration of binding sites. The adsorption is reversible, but desorption is a very slow process.Fundação para a Ciência e a Tecnologia (FCT

    A scheme for designating enzymes that hydrolyse the polysaccharides in the cell-walls of plants

    Get PDF
    International audienc

    Active-site mapping of a populus xyloglucan endo-transglycosylase with a library of xylogluco-oligosaccharides

    No full text
    International audienc

    The active site of cellobiohydralase Ce16A from Trichorderma reesei: the roles of aspartic acids D221 and D175

    No full text
    Trichoderma reesei cellobiohydrolase Cel6A is an inverting glycosidase. Structural studies have established that the tunnel-shaped active site of Cel6A contains two aspartic acids, D221 and D175, that are close to the glycosidic oxygen of the scissile bond and at hydrogen-bonding distance from each other. Here, site-directed mutagenesis, X-ray crystallography, and enzyme kinetic studies have been used to confirm the role of residue D221 as the catalytic acid. D175 is shown to affect protonation of D221 and to contribute to the electrostatic stabilization of the partial positive charge in the transition state. Structural and modeling studies suggest that the single-displacement mechanism of Cel6A may not directly involve a catalytic base. The value of D2O(V) of 1.16 ( 0.14 for hydrolysis of cellotriose suggests that the large direct effect expected for proton transfer from the nucleophilic water through a water chain (Grotthus mechanism) is offset by an inverse effect arising from reversibly breaking the short, tight hydrogen bond between D221 and D175 before catalysis

    The Two Major Xylanases from Trichoderma Reesei: Characterization of Both Enzymes and Genes

    No full text
    As a first step to exploit the potential of Trichoderma reesei to produce hemicellulases, we have purified two endo-β-1,4-xylanases (1,4-β-D-xylan xylanohydrolase, EC 3.2.1.8) and cloned their genes. The enzymes were isolated from culture filtrates of T. reesei C 30 grown on xylan as a carbon source, using two steps of cation exchange chromatography. They exhibited molecular weights of 19 (XYN I) and 21 (XYN II) kD, and isoelectric points of 5.2 and 9.0, respectively. These enzymes differed in their pH optimum for activity and affinity for xylan, and accounted for more than 90% of the total xylanolytic activity of the fungus. The purified enzymes were subjected to N-terminal sequence analysis, and after cleavage with trypsin and endoproteinase Glu-C the resulting peptides were sequenced. Oligonucleotides based on these sequences were used to clone gene fragments via PCR, and these were used as probes to isolate full-length copies of xyn1 and xyn2 from a lambda gene bank of T. reesei. The products of xyn1 and xyn2 share considerable homology, but the enzyme encoded by xyn2 appears to more closely resemble several other bacterial and fungal xylanases than does that of xyn1.Peer reviewe
    corecore