135 research outputs found

    Polls and the political process: the use of opinion polls by political parties and mass media organizations in European post‐communist societies (1990–95)

    Get PDF
    Opinion polling occupies a significant role within the political process of most liberal-capitalist societies, where it is used by governments, parties and the mass media alike. This paper examines the extent to which polls are used for the same purposes in the post-communist countries of Central and Eastern Europe, and in particular, for bringing political elites and citizens together. It argues that these political elites are more concerned with using opinion polls for gaining competitive advantage over their rivals and for reaffirming their political power, than for devolving political power to citizens and improving the general processes of democratization

    Boojums and the Shapes of Domains in Monolayer Films

    Full text link
    Domains in Langmuir monolayers support a texture that is the two-dimensional version of the feature known as a boojum. Such a texture has a quantifiable effect on the shape of the domain with which it is associated. The most noticeable consequence is a cusp-like feature on the domain boundary. We report the results of an experimental and theoretical investigation of the shape of a domain in a Langmuir monolayer. A further aspect of the investigation is the study of the shape of a ``bubble'' of gas-like phase in such a monolayer. This structure supports a texture having the form of an inverse boojum. The distortion of a bubble resulting from this texture is also studied. The correspondence between theory and experiment, while not perfect, indicates that a qualitative understanding of the relationship between textures and domain shapes has been achieved.Comment: replaced with published version, 10 pages, 13 figures include

    Contribution to the understanding of tribological properties of graphite intercalation compounds with metal chloride

    Get PDF
    Intrinsic tribological properties of lamellar compounds are usually attributed to the presence of van der Waals gaps in their structure through which interlayer interactions are weak. The controlled variation of the distances and interactions between graphene layers by intercalation of electrophilic species in graphite is used in order to explore more deeply the friction reduction properties of low-dimensional compounds. Three graphite intercalation compounds with antimony pentachloride, iron trichloride and aluminium trichloride are studied. Their tribological properties are correlated to their structural parameters, and the interlayer interactions are deduced from ab initio bands structure calculations

    Comparison of Three Targeted Enrichment Strategies on the SOLiD Sequencing Platform

    Get PDF
    Despite the ever-increasing throughput and steadily decreasing cost of next generation sequencing (NGS), whole genome sequencing of humans is still not a viable option for the majority of genetics laboratories. This is particularly true in the case of complex disease studies, where large sample sets are often required to achieve adequate statistical power. To fully leverage the potential of NGS technology on large sample sets, several methods have been developed to selectively enrich for regions of interest. Enrichment reduces both monetary and computational costs compared to whole genome sequencing, while allowing researchers to take advantage of NGS throughput. Several targeted enrichment approaches are currently available, including molecular inversion probe ligation sequencing (MIPS), oligonucleotide hybridization based approaches, and PCR-based strategies. To assess how these methods performed when used in conjunction with the ABI SOLID3+, we investigated three enrichment techniques: Nimblegen oligonucleotide hybridization array-based capture; Agilent SureSelect oligonucleotide hybridization solution-based capture; and Raindance Technologies' multiplexed PCR-based approach. Target regions were selected from exons and evolutionarily conserved areas throughout the human genome. Probe and primer pair design was carried out for all three methods using their respective informatics pipelines. In all, approximately 0.8 Mb of target space was identical for all 3 methods. SOLiD sequencing results were analyzed for several metrics, including consistency of coverage depth across samples, on-target versus off-target efficiency, allelic bias, and genotype concordance with array-based genotyping data. Agilent SureSelect exhibited superior on-target efficiency and correlation of read depths across samples. Nimblegen performance was similar at read depths at 20× and below. Both Raindance and Nimblegen SeqCap exhibited tighter distributions of read depth around the mean, but both suffered from lower on-target efficiency in our experiments. Raindance demonstrated the highest versatility in assay design

    Whole-Exome Sequencing Identifies Homozygous AFG3L2 Mutations in a Spastic Ataxia-Neuropathy Syndrome Linked to Mitochondrial m-AAA Proteases

    Get PDF
    We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C) in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7). Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28), a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2Y616C gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2Y616C complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other “mitochondrial” features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias

    A transcriptome-wide association study among 97,898 women to identify candidate susceptibility genes for epithelial ovarian cancer risk

    Get PDF
    Large-scale genome-wide association studies (GWAS) have identified approximately 35 loci associated with epithelial ovarian cancer (EOC) risk. The majority of GWAS-identified disease susceptibility variants are located in non-coding regions, and causal genes underlying these associations remain largely unknown. Here we performed a transcriptome-wide association study to search for novel genetic loci and plausible causal genes at known GWAS loci. We used RNA sequencing data (68 normal ovarian-tissue samples from 68 individuals and 6,124 cross-tissue samples from 369 individuals) and high-density genotyping data from European descendants of the Genotype-Tissue Expression (GTEx V6) project to build ovarian and cross-tissue models of genetically regulated expression using elastic net methods. We evaluated 17,121 genes for their cis-predicted gene expression in relation to EOC risk using summary statistics data from GWAS of 97,898 women, including 29,396 EOC cases. With a Bonferroni-corrected significance level of P<2.2×10-6, we identified 35 genes including FZD4 at 11q14.2 (Z=5.08, P=3.83×10-7, the cross-tissue model; 1 Mb away from any GWAS-identified EOC risk variant), a potential novel locus for EOC risk. All other 34 significantly-associated genes were located within 1 Mb of known GWAS-identified loci, including 23 genes at 6 loci not previously linked to EOC risk. Upon conditioning on nearby known EOC GWAS-identified variants, the associations for 31 genes disappeared and 3 genes remained (P<1.47 x 10-3). These data identify one novel locus (FZD4) and 34 genes at 13 known EOC risk loci associated with EOC risk, providing new insights into EOC carcinogenesis
    corecore