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Abstract

Background: Despite the tremendous drop in the cost of nucleotide sequencing in recent years, many research
projects still utilize sequencing of pools containing multiple samples for the detection of sequence variants as a
cost saving measure. Various software tools exist to analyze these pooled sequence data, yet little has been
reported on the relative accuracy and ease of use of these different programs.

Results: In this manuscript we evaluate five different variant detection programs—The Genome Analysis Toolkit
(GATK), CRISP, LoFreq, VarScan, and SNVer—with regard to their ability to detect variants in synthetically pooled
Illumina sequencing data, by creating simulated pooled binary alignment/map (BAM) files using single-sample
sequencing data from varying numbers of previously characterized samples at varying depths of coverage per
sample. We report the overall runtimes and memory usage of each program, as well as each program’s sensitivity
and specificity to detect known true variants.

Conclusions: GATK, CRISP, and LoFreq all gave balanced accuracy of 80 % or greater for datasets with varying
per-sample depth of coverage and numbers of samples per pool. VarScan and SNVer generally had balanced
accuracy lower than 80 %. CRISP and LoFreq required up to four times less computational time and up to ten times
less physical memory than GATK did, and without filtering, gave results with the highest sensitivity. VarScan and
SNVer had generally lower false positive rates, but also significantly lower sensitivity than the other three programs.
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Background
Due to recent advances in “next-generation” high-
throughput sequencing (NGS) techniques, the cost of se-
quencing a human genome has fallen significantly over
the past decade, from roughly 95 million dollars for the
project that led to the human genome reference sequence
to approximately five thousand dollars today [1]. Despite
these large reductions in sequencing costs, it can still be
prohibitively expensive to sequence and analyze a large
number of samples individually. This makes it difficult to
conduct the large scale sequencing studies necessary to
detect and analyze rare variants, which have been sus-
pected to contribute to a significant proportion of com-
plex genetic diseases in humans [2].
Over the years, there has been discussion of the

merits of pooling individual DNA samples together
prior to sequencing [3, 4]. Pooling DNA, without including
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identifying index sequences, allows one to obtain and
analyze genetic data from a larger number of individuals
with only a fraction of the time and resources it would
require to prepare and sequence each person individually.
Increasing the number of human genomes and exomes an-
alyzed through pooled sequencing could offer more com-
prehensive variant detection and better statistical power
for variant association studies of genetic diseases. As a re-
sult, several programs have been written for the detection
of variants in pooled sequencing data, including CRISP [5],
SNVer [6], LoFreq [7], VarScan [8], and GATK’s Unified
Genotyper [9].
However, there are a number of disadvantages in using

pooled sequencing data for variant detection. First, any
variant found using a one pool per sample scheme can-
not be traced back to the original individual samples
harboring that variant in the pooled sample. Furthermore,
there is a risk of not detecting rare variants in pools with a
large number of individuals. This is because each single
variant would only be represented in approximately 1
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the pooled sample reads, where n is the number of diploid
individuals in the pool. As a result, singletons, rare var-
iants occurring only once in the pool, could have repre-
sentation rates lower than the sequencing error rate if
the pool has an especially large number of samples, and
in the limit where the number of reads covering a site
is less than the number of alleles, it becomes increas-
ingly likely that a singleton variant will not be se-
quenced at all.
To resolve this issue, many variant detectors employ

different combinations of various Bayesian and frequen-
tist statistical models, read quality score analysis, and
other known error patterns in Illumina and other NGS
platforms’ sequencing reads to locate these singletons
[5–9]. CRISP employs two methods to distinguish true
variants from sequencing errors: to discover rare vari-
ants, it calculates a p-value against the null hypothesis
of equal distribution of a proposed variant allele across
all pools analyzed, and to identify common variants, it
calculates a p-value for the null hypothesis of binomial
distribution of sequencing error in each sample, requir-
ing significance on both forward and reverse strand of
the reference [5]. SNVer also employs binomial models
of sequencing error rates and variant allele frequency to
determine the p-value cutoff for true variants in a single
pool, then uses the Simes method to create a “pooled
p-value” from multiple pools [6]. To assign a p-value for
each true variant, LoFreq models the distribution of
variants in a sample as a Poisson-binomial distribution,
then uses the phred-quality scores of each base call to
model the sequencing error rate in its analysis [7]. VarS-
can selects and scans reads with the best alignment to a
reference sequence to locate single nucleotide variants
(SNVs) and indels [8]. Finally, GATK’s Unified Genoty-
per uses a Bayesian likelihood model to calculate the
posterior probability of a variant at a particular position
and determine allele frequencies in a pooled sample,
given a user-specified number of alleles present per
sample. Unlike the other programs, GATK provides the
genotypes of each pool annotated with a phred-scaled
confidence value [9].
In order for pooled genome sequencing to be ultim-

ately feasible, a large proportion of variants and sin-
gletons must be retrievable from pooled read data. In
addition, variant detectors must not report too large a
proportion of false positives in order to provide re-
sults that are useful for subsequent studies. Therefore,
it is valuable to perform an analysis of these variant
detectors in order to better understand the potential bene-
fits and tradeoffs of using pooled sequencing data. Deter-
mining the optimal variant detection programs and the
best methods to run them could also prove useful for
future genetic studies employing pooled sequencing
techniques.
Methods
Generation of simulated pooled BAM files
To evaluate the five selected variant detection programs
for accuracy, we ran each of them on pooled read data
from two separately-generated datasets with known vari-
ants. First, we generated simulated pooled data using full-
depth exome-captured Illumina HiSeq data from 256
individuals sequenced as part of the ClinSeq® Project [10].
In addition to aligning the read data with novoalign
(http://www.novocraft.com) and removing PCR duplicate
reads, we generated a “truth set” of variant call format, or
VCF-formatted, files [11] specifying high confidence SNVs
present in each individual, as well as browser extensible
data, or BED, files containing the regions determined with
high confidence to be nonvariant (homozygous reference),
both using the bam2mpg variant caller [12]. To determine
whether the alignment and preprocessing methods used
prior to calling variants affects the accuracy of pooled
variant detection, we also generated simulated pools from
64 lower depth exome-captured Illumina HiSeq reads
from the 1000 Genomes Project [13], which had previ-
ously been aligned to the GRCh37 human reference with
BWA, the Burroughs-Wheeler aligner [14] and processed
with PCR duplicate removal, base quality recalibration,
and realignment around known insertions and deletions
according to currently accepted best practices [15].
To study the behavior of the programs we evaluated

under different pooling scenarios, we created pools of
varying depth of coverage and number of samples per
pool, and then, when a program allowed it, analyzed these
pools in groups of varying size. One program, LoFreq,
only permitted the analysis of one pool of samples at a
time, and another, CRISP, would only run on groups of
pools. Pools were made by selecting random subsets of
reads from the individual BAM files, reducing the number
of reads from each individual from full coverage to 50 %,
25 %, or 12.5 % of the original total for that sample. These
“titrated” BAM files were then merged into simulated
pools of 4, 8, 16, or 32 samples using SamTools’s merge
BAMs feature [16]. All possible non-overlapping groups
of pools were then analyzed with each of the programs,
allowing us to observe the variance of our accuracy
measures across different sets of pools. Analyses were
restricted to sequence data and variants from human
chromosome 20 to decrease the time required to per-
form the analyses.

Depth of coverage in pooled BAM files
The average number and standard deviation of total
number of reads and average depth of coverage within
targeted regions for each of the 256 individual ClinSeq
BAM files and 64 individual 1000 Genomes BAM files
are listed in Additional file 1: Table S1. The 256 ClinSeq
samples had higher depth of coverage sequence data, in

http://www.novocraft.com


Huang et al. BMC Bioinformatics  (2015) 16:235 Page 3 of 9
general, with an average of 70.2× read depth within re-
gions targeted by the exome capture kit (standard devi-
ation 21.1×), while the 64 1000 Genomes samples had an
average depth of coverage of 42.0× (standard deviation
2.7×). Therefore, pools of ClinSeq samples that were sam-
pled to contain 25 % of the original depth of coverage had
an average of 70.2 times 0.25, or approximately 18× cover-
age per sample, whereas pools of 1000 Genomes samples
sampled at 25 % of original coverage had only an average
of 10.5× coverage per sample.
Although the relatively high variation in coverage per

individual BAM file, especially for the ClinSeq samples,
meant that the simulated BAM files had unequal read
representation of each individual in each pool, this enabled
us to test how well these programs can retrieve variants in
the presence of this kind of variability. In fact, this distri-
bution of read coverage among pooled samples simulates
the real variability of actual pooled sequencing samples,
since the sequence data for both the ClinSeq and the 1000
Genomes samples were generated by pooling indexed li-
braries prior to sequencing on the Illumina HiSeq plat-
form. The sequence coverage obtained from pooling these
identified libraries prior to sequencing can be expected to
mimic the coverage for different libraries in a pool without
identifying indexes.

Installing and running variant detectors
We installed, ran, and evaluated results from the programs
CRISP, SNVer, LoFreq, VarScan, and GATK’s Unified
Genotyper. As these programs were written in different
programming languages and have different software de-
pendencies and options, we have included the details of
each program’s installation and usage in the Additional file
2. Once we installed all of the programs, we ran them to
see how much memory and processing time were required
to analyze our pooled BAM files. SNVer, Varscan, and
GATK had components written in Java, requiring us to re-
quest memory allocation prior to submitting jobs to the
computer cluster, so we were more generous in providing
memory to those programs. CRISP and LoFreq, which are
written in C, required up to tenfold less memory than the
other three, and therefore we were better able to deter-
mine the actual memory usage of these two programs.
We ran each of our selected programs on our two sets

of pooled BAM files to locate single nucleotide variants
(SNVs). GATK requires users to run a series of Picard tools
in order to generate BAM indexes and process BAMs for
its Unified Genotyper, and VarScan required users to pipe
or input the BAM and reference files in pileup format,
while no significant pre-processing was required by the
other programs prior to running.
With the exception of LoFreq, all programs were also

able to process BAM files from multiple different pools
simultaneously. Following CRISP’s recommendations to
run five or more pooled BAM files in each run [5], we
ran every program except LoFreq with as many as eight
pooled BAM files per analysis. When possible, we also
ran each program on individual BAM files containing a
single pool, to see how changing the number of BAM
files per run affected SNV detection. For CRISP, which
only allows processing of two or more pools, we com-
pared results after running on more than two pools to
results when running on two pools.

Analyzing output data from variant detectors
All of the programs reported predicted variants in VCF
format. Using the variants predicted by an independent
method (bam2mpg) from the individually sequenced, full
coverage samples, as well as the regions determined with
high confidence to contain no variants in each sample,
we checked each program’s pooled VCF file for accuracy
and singleton detection rates. To do this, we first com-
bined together all high-confidence SNVs in the single
sample VCFs, and marked as singletons in each pool all
SNVs that were present in only one sample from that
pool. These variants constituted our “truth” set for a given
pool. We also restricted our analysis for each pool or set of
pools to the regions for which all samples in the pool had
high confidence bam2mpg calls (either variant or homozy-
gous reference), so that variants called in the pooled data
which were unobserved in the individual samples could
safely be assumed to be false positives (see Additional file 2
for more details). By comparing the pooled data calls to
the variants present in the individual samples, we were able
to calculate sensitivity as percentage of true variants de-
tected, false positive rate as percentage of predicted vari-
ants which are false, and balanced accuracy as the mean of
the sensitivity and one minus the false positive rate.
Although our analysis evaluated the accuracy of the

five programs only with regard to single nucleotide vari-
ants, all five programs are also capable of predicting the
locations of small insertion and deletion variants.
Since LoFreq could only process one pooled BAM file

at a time, we merged single pool LoFreq VCFs and the
corresponding true VCFs for each pool into groups of
pools during the accuracy analysis of multi-pool runs. This
way, the accuracy and singleton detection of LoFreq could
be more fairly compared against the other programs’ runs
on same-sized groups of pools. This particular analysis
was also repeated for the other programs when they were
processing individual pooled BAM files. Since CRISP had
to process a minimum of two pooled BAM files per run,
CRISP VCFs had to be grouped differently for results from
two pools versus results from eight pools. To allow an
even comparison between these two types of runs, four
CRISP VCFs with two pools each were merged and com-
pared against true variants for the relevant samples, and
single CRISP VCFs with eight pools each were then
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compared against the same true variants. These groupings
were structured so that data from both sets would contain
the same numbers of individuals and variants per group
during analysis.
To perform a ROC analysis for each program’s sensi-

tivity to detect SNVs and singletons, we progressively
filtered low quality scores or high p-values from each
program’s output and measured sensitivity and number
of false positives. This analysis was done on VCF output
from the eight sample, 50 % coverage ClinSeq pools, with
eight pools per program run, as well as the four sample,
50 % coverage Thousand Genomes pools, analyzed with
four pools per program run. The score cutoffs were deter-
mined by calculating the range of quality scores produced
by each program’s VCF, attempting to create a wide distri-
bution of sensitivity and false positives calls for each pro-
gram. In addition, we compared false positive and false
discovery rates for each program to the rates implied by
their reported quality scores.

Ethics committee
Whole exome sequencing of samples from ClinSeq par-
ticipants was approved by the National Human Genome
Research Institute’s Institutional Review Board under
protocol number 07-HG-0002.

Results and discussion
SNV detection results
Table 1 reports the sensitivity (%Sen), false positive rate
(% FP), balanced accuracy (% Bal. Acc.), and singleton
sensitivity rate (% Sing) for each program run on pools
of different numbers of samples and coverage per sample.
Scores reported in bold text represent better performance,
while scores in non-bold text represent worse perform-
ance within each column.
In general, LoFreq, CRISP, and GATK achieved the

highest balanced accuracy. While CRISP and GATK had
higher sensitivities, LoFreq achieved good sensitivity with
a lower percentage of false positive calls. GATK runs on
BWA-aligned BAM files (from the Thousand Genomes
dataset) resulted in lower false positive rates than GATK
runs on novoalign-aligned BAM files (from the ClinSeq
dataset). Figures 1 and 2 show the effects of increasing the
number of individuals per pool and the coverage per sam-
ple, respectively, on balanced accuracy of each program.
When the number of individuals per pool was increased,
all programs except CRISP suffered from a higher rate of
false positives, which decreased their overall balanced ac-
curacy. Similarly, when the coverage for each individual
was reduced, the sensitivity of each program suffered simi-
lar losses while their false positive calls improved.
While GATK had the best overall accuracy, ranging

from 86 to nearly 100 %, when run on pools of four or
eight samples, its run time increased significantly as the
number of samples per pool increased. Since our GATK
analyses of any number of pools with 16 samples each
ran for greater than seven days without finishing, we de-
cided not to report results for GATK in this scenario,
for which CRISP had the best overall accuracy.

Detection of rare variants
Table 1 also demonstrates the higher sensitivity of LoFreq,
CRISP, and GATK for the detection of singleton variants
in pools of four, eight, or sixteen samples. While this abil-
ity to detect rarer variants is a critical requirement in the
analysis of pooled sequence data, GATK, especially, re-
ported these variants along with a larger number of false
positive calls, ranging up to nearly 11 % of all predicted
variants when GATK is run on BAM files for the ClinSeq
dataset. On the other hand, LoFreq attained high sensitiv-
ity for detecting singleton variants without a markedly in-
creased false positive rate.
Since single samples displaying mosaicism, or somatic

variants present in only a fraction of cells, also display
variant alleles in small fractions of sequencing reads, the
programs we evaluated could be run on sequence data
to search for mosaic variants. Still, while pooled samples
usually have a known number of chromosomes present,
mosaic variants will be present in an unpredictable frac-
tion of the DNA. All of the programs we evaluated, ex-
cept for LoFreq, required the user to specify the number
of chromosomes, or ploidy, present in the pool. Since
the exact number of alleles present is unknown in a mo-
saic sample, LoFreq provides the convenience of not hav-
ing to experiment by running programs with different
values for this parameter, and may represent the best op-
tion for detection of mosaic variants.

Filtering VCF output
Figure 3 shows the sensitivities and total false positive
counts of each program’s eight sample 50 % coverage
ClinSeq pool runs (eight pools per run, with average total
coverage of 35.1x per pool) as variants were progressively
filtered out using provided quality scores and p-values.
Detailed values of quality thresholds and accuracy met-
rics for each program, as well as the corresponding
graph for the Thousand Genomes dataset, are reported
in Additional file 1: Table S2. As expected, singleton
detection rates were more negatively impacted than
overall program sensitivities during attempts to filter
out false positives. For GATK, setting quality score cutoffs
of roughly 70 to 90 led to moderate decreases in false
positive calls without excessive losses in overall sensitivity
and singleton detection rates. For CRISP and LoFreq, fil-
tering was less beneficial and led to greater losses in sensi-
tivity and rare variant detection rates than GATK. CRISP
displayed a fairly linear relationship between overall sensi-
tivity and false positive calls.



Table 1 Program SNV Detection Results for (a) ClinSeq samples and (b) 1000 Genomes samples

a

4 PooledSamples %Sen %FP %BA %SD %Sen %FP %BA %SD %Sen %FP %BA %SD %Sen %FP %BA %SD

100 % Sample Covg 50 % Sample Covg 25 % Sample Covg 12.5 % Sample Covg

CRISP 99.2 7.8 95.7 98.9 97.3 7.3 95 94.2 88.9 6.5 91.2 76.5 71.3 6.2 82.5 44.9

SNVer 81.9 3.8 89 72.4 74.9 3 85.9 59.1 62.7 2.4 80.1 37.3 48 1.7 73.2 16.6

LoFreq 97.3 8.3 94.5 95.5 93 6.7 93.1 84.1 84 5.2 89.4 63.4 69 4.1 82.5 39.1

VarScan 46.7 0.1 73.3 4.7 47.7 0.1 73.8 6.2 48.9 0.1 74.4 8.1 45 0.3 72.3 6.6

GATK 99.7 6.9 96.4 99.4 98.7 7.4 95.7 96.7 94.7 8 93.3 86.3 85.7 8.7 88.5 65.1

8 Pooled Samples %Sen %FP %BA %SD %Sen %FP %BA %SD %Sen %FP %BA %SD %Sen %FP %BA %SD

100 % Sample Covg 50 % Sample Covg 25 % Sample Covg 12.5 % Sample Covg

CRISP 99.3 7.8 95.8 98.9 97.2 7.4 94.9 94.1 88.9 6.8 91.1 77.5 71.2 6.7 82.2 46.1

SNVer 79.9 3.6 88.1 65.7 69.4 3.2 83.1 47.1 55.5 2.8 76.3 25.3 42.5 2.4 70 9.9

LoFreq 96.7 7.3 94.7 93.1 91.8 6.5 92.7 79 82.8 5.4 88.7 56 70.7 4.3 83.2 31.8

VarScan 28.8 0.1 64.4 0 29.2 0.1 64.5 0.1 29.8 0.1 64.8 0.1 30.4 0.2 65.1 0.3

GATK 98.5 8.6 94.9 96.4 98 8.5 94.7 95.1 94 10.1 91.9 86 83.9 11.4 86.3 64

16 Pooled Samples %Sen %FP %BA %SD %Sen %FP %BA %SD %Sen %FP %BA %SD %Sen %FP %BA %SD

100 % Sample Covg 50 % Sample Covg 25 % Sample Covg 12.5 % Sample Covg

CRISP 99.1 7.7 95.7 98.5 96.7 7.6 94.6 93.3 87.7 7 90.4 76.6 69.3 7 81.2 46.3

SNVer 66.9 3.5 81.7 42.9 53.7 3.4 75.1 23.8 42.4 3.2 69.6 10.8 33.2 3 65.1 3.6

LoFreq 94.9 6.4 94.2 87.6 88.5 6 91.3 69.8 78.5 5.5 86.5 44.7 67 4.8 81.1 22.5

VarScan 18.1 0.1 59 0 18.2 0.1 59 0 18.4 0.1 59.1 0 18.7 0.1 59.3 0

GATK NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

32 Pooled Samples %Sen %FP %BA %SD %Sen %FP %BA %SD %Sen %FP %BA %SD %Sen %FP %BA %SD

100 % Sample Covg 50 % Sample Covg 25 % Sample Covg 12.5 % Sample Covg

CRISP 98.7 7.9 95.4 97.5 95.8 7.6 94.1 91.8 86 7.1 89.5 74.4 67.5 7.3 80.1 46.2

SNVer 41.8 4.2 68.8 11 34.6 4.2 65.2 5 29.3 3.8 62.7 2.3 24.5 3.8 60.4 0.6

LoFreq 90.7 5.4 92.7 77.5 82.2 5.4 88.4 55.7 71.1 5.3 82.9 31.2 60.5 5.2 77.6 13.8

VarScan 11.4 0 55.7 0 11.5 0.2 55.7 0 11.5 0.2 55.7 0 11.6 0.2 55.7 0

GATK NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

b

4 Pooled Samples %Sen %FP %BA %SD %Sen %FP %BA %SD %Sen %FP %BA %SD %Sen %FP %BA %SD

100 % Sample Covg 50 % Sample Covg 25 % Sample Covg 12.5 % Sample Covg

CRISP 99.2 4.4 97.4 98.5 90.9 4 93.5 80.3 74.2 3.7 85.3 48.7 55.5 3.3 76.1 22.4

SNVer 86.5 1.3 92.6 74.8 70.9 0.9 85 47.3 50.3 0.4 74.9 18.5 33.2 0.6 66.3 4.4

LoFreq 96.8 0.4 98.2 94.1 87.3 0.2 93.5 73.9 71 0.1 85.5 44.3 48.9 0 74.4 19.7

VarScan 44.6 0 72.3 0.9 45.1 0 72.5 3.2 42.3 0 71.2 3.8 33.4 0 66.7 1.4

GATK 99.9 0.3 99.8 99.8 97.5 0.2 98.6 93.8 89.3 0.2 94.6 74.9 73.9 0.3 86.8 44.7

8 Pooled Samples %Sen %FP %BA %SD %Sen %FP %BA %SD %Sen %FP %BA %SD %Sen %FP %BA %SD

100 % Sample Covg 50 % Sample Covg 25 % Sample Covg 12.5 % Sample Covg

CRISP 99.2 4.3 97.5 98.4 91.3 4.1 93.6 81.4 75.5 3.7 85.9 50.4 57.7 3.2 77.2 23.8

SNVer 80.5 2.1 89.2 62 61.8 1.8 80 30.1 44.5 0.8 71.8 9.3 30.6 0.8 64.9 1.6

LoFreq 95.4 0.4 97.5 89.7 84.4 0.2 92.1 64 68.5 0.2 84.1 33.3 52.5 0 76.3 13.1

VarScan 25.5 0 62.7 0 26 0 63 0 26.9 0 63.4 0 25.7 0 62.8 0.1

GATK 99.6 1.5 99.1 99.1 97 0.7 98.1 92.6 88.4 0.5 93.9 72.9 72.9 0.4 86.2 42.7

16 Pooled Samples %Sen %FP %BA %SD %Sen %FP %BA %SD %Sen %FP %BA %SD %Sen %FP %BA %SD

100 % Sample Covg 50 % Sample Covg 25 % Sample Covg 12.5 % Sample Covg
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Table 1 Program SNV Detection Results for (a) ClinSeq samples and (b) 1000 Genomes samples (Continued)

CRISP 99.1 4.2 97.4 98.1 91.2 4 93.6 81.5 74.2 3.5 85.3 48.3 57.3 3.3 77 24.5

SNVer 61.3 4.4 78.4 27.8 47.6 3.3 72.1 9.8 36.1 1.6 67.3 1.7 27.3 0.9 63.2 0.3

LoFreq 91.8 0.6 95.6 80.8 78.9 0.2 89.3 50.3 63.2 0.1 81.5 22.4 49.2 0.2 74.5 7.4

VarScan 14.9 0 57.4 0 15.1 0 57.6 0 15.3 0 57.6 0 15.6 0 57.8 0

GATK NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

GATK was unable to process the 16 or 32 pooled sample pools (see runtime results). Pools were run in groups of 8 for the ClinSeq samples and groups of 4 for
the 1000 Genomes samples, except for LoFreq runs, which ran on individual pools, before grouping the results in sets of 8 (ClinSeq) or 4 (1000 Genomes) to
calculating sensitivity, false positive rate, balanced accuracy, and singleton detection rate. Numbers reported in bold face represent the better performance values
for each column
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For SNVer, a large proportion of variants were re-
ported with a p-value of 0. As a result, a large set of
variants could not be filtered out. Similar to CRISP,
SNVer has a fairly linear relationship between sensitiv-
ity and false positive calls and does not benefit signifi-
cantly from filtering of variants with worse scores.
VarScan, in general, had very low false positive calls,
but also low sensitivity, which made filtration of its
VCF files undesirable as well.

Accuracy of quality scores
While Fig. 3 shows the range of sensitivity and false
positive values each program attains, the actual quality
scores, or equivalently, the predicted probability of a
call being an error, used in filtering are not clear from
the plot itself. Additional file 1: Table S2 gives the
threshold scores used for the filtering done in Fig. 3,
Fig. 1 Effects of Pool Size on Program Balanced Accuracies. “Balanced accu
positive rate. No data point is reported for GATK with 16 or 32 samples be
plotted for (a) ClinSeq and (b) Thousand Genomes pools containing read d
ClinSeq samples and 21.0x, on average, for Thousand Genomes samples
as well as the implied prediction error probabilities
(for the phred-scaled quality scores reported by all
programs but SNVer) or false discovery rates (for
the p-values reported by SNVer). In general, reported
quality scores for each of these programs are not
predictive of the observed rate of false variant
predictions. For example, LoFreq, GATK, and CRISP
assign phred-scaled quality score values in the thou-
sands, tens of thousands, and even hundreds of thou-
sands, to variants, but clearly, the probability that a
variant call with one of these scores is a false positive
is higher than the near-zero error rates the quality
values predict. For example, a phred-scaled quality
score of 1000 corresponds to a probability that a
variant call is false of 10−100, yet we observe in our
analysis error rates ranging from 0 to 7 % in calls
with a quality score of 1000 or higher. SNVer, which
racy” is defined as the mean of the sensitivity and 1 minus the false
cause runs did not complete within a reasonable timeframe. Values are
epth 50 % of a typical whole exome, which was 35.1x, on average, for



Fig. 2 Effects of Pool Coverage on Program Balanced Accuracies. “Balanced accuracy” is defined as the mean of the sensitivity and 1 minus the
false positive rate. Values are plotted for various fractions of “full coverage” for (a) ClinSeq pools containing eight individuals and (b) Thousand
Genomes pools containing four individuals
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reports p-values rather than quality scores, also re-
ports values that are not predictive of the actual false
positive rate, or probability that an analyzed base with-
out a variant will be predicted to have a variant. It
assigns p-values as low as 10−300 to many calls, and
Fig. 3 ROC Analysis on VCFs generated from ClinSeq eight sample, 50 % c
with eight pools per program run. For CRISP and GATK, quality score filtering
10,000, etc.) to obtain a full range of sensitivity and false positive scores. LoFre
since its quality score range was smaller than those of the other programs
p-values as low as 0), so maximum p-value filtering was set at values from
contained in the worksheet titled “Supp Table S2 Main Paper Figure S3” in
these p-values are also far smaller than the observed
error rates of these predicted high confidence variant
calls. For example, in the Thousand Genomes set, five
out of 3287 calls with p-values as small as 10−300 were
found to be false.
overage pools with a total of 35.1x depth of coverage, on average,
was gradually increased on a logarithmic scale (0–100,100-1000,1000-
q’s filtering was incremented logarithmically up to 1000, then by 100 s
. Many of SNVer’s P-values were extremely small (with reported
10−10 down to 10−300. Full details of score thresholds used are
the Additional file 1: Figure S3
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Comparing runs on individual pools versus groups of
pools
Table 2 displays comparisons, for each program, of re-
sults obtained by submitting different numbers of
pools to be analyzed together versus results obtained
by running just one or two pools at a time. Surpris-
ingly, submitting multiple pooled BAM files to each
program did not result in significant improvements in
accuracy as one might initially expect. Instead, at least
one program (SNVer) displayed improved balanced
accuracy when individual pooled BAM files were
Table 2 Effects of submitting multiple and individual pooled
BAM files to each program

a

Group Size Sen% FP% BA% SD%

CRISP-2 pools 97.8 10.5 93.7 95.3

CRISP-4 pools 96.1 7.5 94.3 91.6

CRISP-8 pools 97.2 7.4 94.9 94.1

SNVer-1 pool 72.4 3.3 84.6 52.9

SNVer-2 pools 71.4 3.3 84.1 51

SNVer-4 pools 70.4 3.3 83.6 49

SNVer-8 pools 69.4 3.2 83.1 47.1

VarScan-1 pool 29.3 0.1 64.6 0.1

VarScan-2 pools 29.3 0.1 64.6 0.1

VarScan-4 pools 29.3 0.1 64.6 0.1

VarScan-8 pools 29.2 0.1 64.5 0.1

GATK-1 pool 98.2 9.1 94.6 95.9

GATK-2 pools 98.2 9 94.6 95.8

GATK-4 pools 98.1 8.6 94.7 95.5

GATK-8 pools 98 8.5 94.7 95.1

b

Group Size Sen% FP% BA% SD%

CRISP-2 pools 97.1 4.1 96.5 93.2

CRISP-4 pools 92.2 4 94.1 83.4

SNVer-1 pool 74.4 1 86.7 53.6

SNVer-2 pools 73.7 1 86.3 52.5

SNVer-4 pools 72.8 1 85.9 50.8

VarScan-1 pool 41 0 70.5 3.1

VarScan-2 pools 41 0 70.5 3.1

VarScan-4 pools 40.9 0 70.5 3.1

GATK-1 pool 98 0.2 98.9 95.2

GATK-2 pools 97.9 0.2 98.9 95.1

GATK-4 pools 97.9 0.2 98.9 95

In (a), all values were calculated using eight ClinSeq samples per pool with
35.1x average total coverage (50 % of typical full coverage for each sample). In
(b), all values were calculated using four Thousand Genomes samples per pool
with 21.0x average total coverage (50 % of typical full coverage for
each sample)
submitted. The fact that most programs showed little
improvement in accuracy when analyzing large groups
of pools simultaneously indicates that the added com-
putational burden of processing a large dataset to-
gether may not be necessary to obtain good results.
Analysis of false positives
To assess whether predictions the five programs made
that were designated as false may in fact be false nega-
tives in the truth sets we created with bam2mpg, we
first determined to what degree the four of the pro-
grams’ false positive variants overlapped with each
other. Because VarScan predicted so few false posi-
tives, we did not include it in this analysis. For pools
of eight samples from the ClinSeq dataset at 12.5 % of
normal coverage and analyzed in groups of eight (or
individually, using LoFreq), we found that out of a
total 2789 predicted false positives, only 70 were pre-
dicted by all four programs, and 2417 were predicted
only by a single program (523 by CRISP, 1577 by
GATK, 317 by LoFreq, and 0 by SNVer). A breakdown
of the genomic locations of all 2789 false positives is
given in Additional file 1: Table S3. In addition, an
analysis of the variant allele frequencies of the 70 false
positive predictions shared by all four programs re-
vealed that 43 of these variants were found in at least
one read in all 256 ClinSeq samples’ individual read
datasets, which would be highly unlikely were they
real variants, and 65 of them were not found in 50 %
or more of reads in any of the 256 ClinSeq samples,
which would also be highly unlikely were they true
germline, diploid variants. Mean, standard deviation,
minimum, and maximum values of the total depth of
coverage and the variant allele frequency among the 256
samples for each of the 70 shared variants are given in
Additional file 1: Table S4. Fifty-six of the 70 shared vari-
ants are located within one megabase of the chr20 centro-
meric sequence, indicating that they may actually be false
positives resulting from mapping errors, since the centro-
meres consist mainly of repetitive sequence.
Program memory allocation and runtimes
The approximate runtimes and memory allocated to
each program are shown in Table 3. Overall, CRISP and
LoFreq had the fastest runtimes and most efficient
memory usage. Both programs were written in C. In
contrast, GATK required roughly four times more time
and up to ten times the amount of memory to run. Its
runtime for analysis of eight sample pools was approxi-
mately 40 h, while its 16 samples pooled analyses were
unable to finish running within a reasonable timeframe
(greater than seven days).



Table 3 Program memory allocation and runtimes for pooled
BAM files of 4, 8, and 16 ClinSeq samples, 35.1× average
coverage each

Program CPU Hours per BAM file Memory Used/Provided

CRISP <2 h <150 Mb Used

SNVer 1 - 5 h 4 - 8 Gb Provided

LoFreq 1 - 5 h ~150 Mb Used

VarScan 2 - 5 h 6-8 GB Provided

GATK 8 h - +7 days 4 - 20 Gb Provided

Java programs required users to specify memory restrictions. Programs written
in C were memory efficient and ran relatively quickly
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Conclusions
Based on simulated pooled data, LoFreq, CRISP, and
GATK gave optimal balanced accuracy for most pooled
datasets. Both CRISP and GATK were observed to have
better sensitivity for singleton variants in pools than
LoFreq when no filtering of calls is performed. However,
LoFreq was found to have fewer false positives and was
more flexible in terms of usage: it did not require users
to specify sample ploidy, which makes the use of LoFreq
more straightforward for analyzing data from mosaics.
In addition, LoFreq has built-in features for detecting
variants from somatic and cancer cell data, which are
options worth pursuing given its high balanced accuracy
for variant detection in large pools. In terms of runtime,
memory usage, accuracy, and ease of usage, both LoFreq
and CRISP were found to be better than GATK, and in
fact, GATK was unable to process pools with 16 or more
samples in a reasonable amount of time. Still, users
wanting optimal sensitivity for smaller pools may find
GATK to be worth the investment of increased time and
memory requirements.
While this study did not evaluate the performance of

these callers on true pooled samples, and only single nu-
cleotide variant calls and not small insertion and deletion
calls were assessed, the study can still serve as a useful
starting point for users making choices about which soft-
ware to run on pooled next-generation sequence data.
Additional files

Additional file 1: Contains Supplementary Tables S1-S5, and data
used to create figures. Huang BMC Bio Supplementary Data.

Additional file 2: Contains details of methods not included in the
main text. Huang BMC Bio Supplementary Methods.
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