361 research outputs found

    The Goddard program of gamma ray transient astronomy

    Get PDF
    Gamma ray burst studies are reviewed. The past results, present status and future expectations are outlined regarding endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5

    Jovian protons and electrons: Pioneer 11

    Get PDF
    A preliminary account of the Pioneer 11 passage through the Jovian magnetosphere as viewed by particle detector systems is presented. Emphasis is placed on the region well within the Jovian magnetosphere using data from the LET-II telescope, which measured the proton flux from 0.2 to 21.2 MeV in seven energy intervals and electrons from 0.1 to 2 MeV in four energy intervals. The relative trajectories of Pioneer 10 and 11 are discussed and indicate that Pioneer 11 was exposed to a much lower total radiation dose than Pioneer 10, largely as a result of the retrograde trajectory which approached and exited the inner region of the magnetosphere at high latitudes. Angular distributions, calculations from Pioneer 11 magnetic field data, and the low-energy nucleon component are included in the discussion

    TGRS Observations of Positron Annihilation in Classical Novae

    Get PDF
    The TGRS experiment on board the Wind spacecraft has many advantages as a sky monitor --- broad field of view (~2 pi) centered on the south ecliptic pole), long life (1994-present), and stable low background and continuous coverage due to Wind's high altitude high eccentricity orbit. The Ge detector has sufficient energy resolution (3-4 keV at 511 keV) to resolve a cosmic positron annihilation line from the strong background annihilation line from beta-decays induced by cosmic ray impacts on the instrument, if the cosmic line is Doppler-shifted by this amount. Such lines (blueshifted) are predicted from nucleosynthesis in classical novae. We have searched the entire TGRS database for 1995-1997 for this line, with negative results. In principle such a search could yield an unbiased upper limit on the highly-uncertain Galactic nova rate. We carefully examined the times around the known nova events during this period, also with negative results. The upper limit on the nova line flux in a 6-hr interval is typically <3.8 E-3 photon/(cm2 s) at 4.6 sigma. We performed the same analysis for times around the outburst of Nova Vel 1999, obtaining a worse limit due to recent degradation of the detector response caused by cosmic ray induced damage.Comment: 5 pp. inc. 3 figs. Proc. 5th Compton Symposium (AIP Conf. Series), ed. M. McConnell, in pres

    BATSE Gamma-Ray Burst Line Search: IV. Line Candidates from the Visual Search

    Full text link
    We evaluate the significance of the line candidates identified by a visual search of burst spectra from BATSE's Spectroscopy Detectors. None of the candidates satisfy our detection criteria: an F-test probability less than 10^-4 for a feature in one detector and consistency among the detectors which viewed the burst. Most of the candidates are not very significant, and are likely to be fluctuations. Because of the expectation of finding absorption lines, the search was biased towards absorption features. We do not have a quantitative measure of the completeness of the search which would enable a comparison with previous missions. Therefore a more objective computerized search has begun.Comment: 18 pages AASTEX 4.0; 4 POSTSCRIPT figures on request from [email protected]

    A coded aperture imaging system optimized for hard X-ray and gamma ray astronomy

    Get PDF
    A coded aperture imaging system was designed for the Gamma-Ray imaging spectrometer (GRIS). The system is optimized for imaging 511 keV positron-annihilation photons. For a galactic center 511-keV source strength of 0.001 sq/s, the source location accuracy is expected to be + or - 0.2 deg

    Detection of a fast, intense and unusual gamma ray transient

    Get PDF
    An unusual transient pulse of approximately 50 keV was detected by the gamma-ray burst sensor network using nine space probes and satellites. Its characteristics are unlike those of the known variety of gamma-ray bursts and therefore suggest that it was formed either by a completely different origin species or in a very different manner. It is identified with the LMC supernova remnant N49

    Three precise gamma-ray burst source locations

    Get PDF
    The precise source regions of three moderately intense gamma ray bursts are derived. These events were observed with the first interplanetary burst sensor network. The optimum locations of the detectors, widely separated throughout the inner solar system, allowed for high accuracy, over-determined source fields of size 0.7 to 7.0 arc-min(2). All three locations are at fairly high galactic latitude in regions of low source confusion; none can be identified with a steady source object. Archived photographs were searched for optical transients that are able to be associated with these source fields; one such association was made

    A technique for sample application in preparative-layer chromatography

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32159/1/0000214.pd

    The Gamma-Ray Imaging Spectrometer (GRIS): A new balloon-borne experiment for gamma-ray line astronomy

    Get PDF
    High resolution gamma-ray spectroscopy is a relatively new field that holds great promise for further understanding of high energy astrophysical processes. When the high resolution gamma-ray spectrometer (GRSE) was removed from the GRO payload, a balloon program was initiated to permit continued development and improvement of instrumentation in this field, as well as continued scientific observations. The Gamma-Ray Imaging Spectrometer (GRIS) is one of the experiments selected as part of this program. The instrument contains a number of new and innovative features that are expected to produce a significant improvement in source location accuracy and sensitivity over previous balloon and satellite experiments

    SSSPM J1444-2019: an extremely high proper motion, ultracool subdwarf

    Full text link
    We present the discovery of a new extreme high proper motion object (3.5 arcsec/year) which we classify as an ultracool subdwarf with [M/H] = -0.5. It has a formal spectral type of sdM9 but also shows L-type features: while the VO bands are completely absent, it exhibits extremely strong TiO absorption in its optical spectrum. With a radial velocity of about -160 km/s and a rough distance estimate of 16--24 pc, it is likely one of the nearest halo members crossing the Solar neighbourhood with a heliocentric space velocity of (U,V,W)=(-244,-256,-100)+/-(32,77,6) km/s.Comment: 4 pages, 4 figures (Fig.1a-d available as jpg files), accepted for publication in Astronomy & Astrophysics Letter
    corecore