361 research outputs found
The Goddard program of gamma ray transient astronomy
Gamma ray burst studies are reviewed. The past results, present status and future expectations are outlined regarding endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5
Jovian protons and electrons: Pioneer 11
A preliminary account of the Pioneer 11 passage through the Jovian magnetosphere as viewed by particle detector systems is presented. Emphasis is placed on the region well within the Jovian magnetosphere using data from the LET-II telescope, which measured the proton flux from 0.2 to 21.2 MeV in seven energy intervals and electrons from 0.1 to 2 MeV in four energy intervals. The relative trajectories of Pioneer 10 and 11 are discussed and indicate that Pioneer 11 was exposed to a much lower total radiation dose than Pioneer 10, largely as a result of the retrograde trajectory which approached and exited the inner region of the magnetosphere at high latitudes. Angular distributions, calculations from Pioneer 11 magnetic field data, and the low-energy nucleon component are included in the discussion
TGRS Observations of Positron Annihilation in Classical Novae
The TGRS experiment on board the Wind spacecraft has many advantages as a sky
monitor --- broad field of view (~2 pi) centered on the south ecliptic pole),
long life (1994-present), and stable low background and continuous coverage due
to Wind's high altitude high eccentricity orbit. The Ge detector has sufficient
energy resolution (3-4 keV at 511 keV) to resolve a cosmic positron
annihilation line from the strong background annihilation line from beta-decays
induced by cosmic ray impacts on the instrument, if the cosmic line is
Doppler-shifted by this amount. Such lines (blueshifted) are predicted from
nucleosynthesis in classical novae. We have searched the entire TGRS database
for 1995-1997 for this line, with negative results. In principle such a search
could yield an unbiased upper limit on the highly-uncertain Galactic nova rate.
We carefully examined the times around the known nova events during this
period, also with negative results. The upper limit on the nova line flux in a
6-hr interval is typically <3.8 E-3 photon/(cm2 s) at 4.6 sigma. We performed
the same analysis for times around the outburst of Nova Vel 1999, obtaining a
worse limit due to recent degradation of the detector response caused by cosmic
ray induced damage.Comment: 5 pp. inc. 3 figs. Proc. 5th Compton Symposium (AIP Conf. Series),
ed. M. McConnell, in pres
BATSE Gamma-Ray Burst Line Search: IV. Line Candidates from the Visual Search
We evaluate the significance of the line candidates identified by a visual
search of burst spectra from BATSE's Spectroscopy Detectors. None of the
candidates satisfy our detection criteria: an F-test probability less than
10^-4 for a feature in one detector and consistency among the detectors which
viewed the burst. Most of the candidates are not very significant, and are
likely to be fluctuations. Because of the expectation of finding absorption
lines, the search was biased towards absorption features. We do not have a
quantitative measure of the completeness of the search which would enable a
comparison with previous missions. Therefore a more objective computerized
search has begun.Comment: 18 pages AASTEX 4.0; 4 POSTSCRIPT figures on request from
[email protected]
A coded aperture imaging system optimized for hard X-ray and gamma ray astronomy
A coded aperture imaging system was designed for the Gamma-Ray imaging spectrometer (GRIS). The system is optimized for imaging 511 keV positron-annihilation photons. For a galactic center 511-keV source strength of 0.001 sq/s, the source location accuracy is expected to be + or - 0.2 deg
Detection of a fast, intense and unusual gamma ray transient
An unusual transient pulse of approximately 50 keV was detected by the gamma-ray burst sensor network using nine space probes and satellites. Its characteristics are unlike those of the known variety of gamma-ray bursts and therefore suggest that it was formed either by a completely different origin species or in a very different manner. It is identified with the LMC supernova remnant N49
Three precise gamma-ray burst source locations
The precise source regions of three moderately intense gamma ray bursts are derived. These events were observed with the first interplanetary burst sensor network. The optimum locations of the detectors, widely separated throughout the inner solar system, allowed for high accuracy, over-determined source fields of size 0.7 to 7.0 arc-min(2). All three locations are at fairly high galactic latitude in regions of low source confusion; none can be identified with a steady source object. Archived photographs were searched for optical transients that are able to be associated with these source fields; one such association was made
A technique for sample application in preparative-layer chromatography
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32159/1/0000214.pd
The Gamma-Ray Imaging Spectrometer (GRIS): A new balloon-borne experiment for gamma-ray line astronomy
High resolution gamma-ray spectroscopy is a relatively new field that holds great promise for further understanding of high energy astrophysical processes. When the high resolution gamma-ray spectrometer (GRSE) was removed from the GRO payload, a balloon program was initiated to permit continued development and improvement of instrumentation in this field, as well as continued scientific observations. The Gamma-Ray Imaging Spectrometer (GRIS) is one of the experiments selected as part of this program. The instrument contains a number of new and innovative features that are expected to produce a significant improvement in source location accuracy and sensitivity over previous balloon and satellite experiments
SSSPM J1444-2019: an extremely high proper motion, ultracool subdwarf
We present the discovery of a new extreme high proper motion object (3.5
arcsec/year) which we classify as an ultracool subdwarf with [M/H] = -0.5. It
has a formal spectral type of sdM9 but also shows L-type features: while the VO
bands are completely absent, it exhibits extremely strong TiO absorption in its
optical spectrum. With a radial velocity of about -160 km/s and a rough
distance estimate of 16--24 pc, it is likely one of the nearest halo members
crossing the Solar neighbourhood with a heliocentric space velocity of
(U,V,W)=(-244,-256,-100)+/-(32,77,6) km/s.Comment: 4 pages, 4 figures (Fig.1a-d available as jpg files), accepted for
publication in Astronomy & Astrophysics Letter
- …