248 research outputs found

    Detection of tightly closed flaws by nondestructive testing (NDT) methods in steel and titanium

    Get PDF
    X-radiographic, liquid penetrant, ultrasonic, eddy current and magnetic particle testing techniques were optimized and applied to the evaluation of 4340 steel (180 KSI-UTS) and 6Al-4V titanium (STA) alloy specimens. Sixty steel specimens containing a total of 176 fatigue cracks and 60 titanium specimens containing a total of 135 fatigue cracks were evaluated. The cracks ranged in length from .043 cm (0.017 inch) to 1.02 cm (.400 inch) and in depth from .005 cm (.002 inch) to .239 cm (.094 inch) for steel specimens. Lengths ranged from .048 cm (0.019 inch) to 1.03 cm (.407 inch) and depths from 0.010 cm (.004 inch) to .261 cm (0.103 inch) for titanium specimens. Specimen thicknesses were nominally .152 cm (0.060 inch) and 0.635 cm (0.250 inch) and surface finishes were nominally 125 rms. Specimens were evaluated in the "as machined" surface condition, after etch surface and after proof loading in a randomized inspection sequence

    Spin accumulation induced resistance in mesoscopic ferromagnet/ superconductor junctions

    Get PDF
    We present a description of spin-polarized transport in mesoscopic ferromagnet-superconductor (F/S) systems, where the transport is diffusive, and the interfaces are transparent. It is shown that the spin reversal associated with Andreev reflection generates an excess spin density close to the F/S interface, which leads to a spin contact resistance. Expressions for the contact resistance are given for two terminal and four terminal geometries. In the latter the sign depends on the relative magnetization of the ferromagnetic electrodes.Comment: RevTeX 10 pages, 4 figures, submitted to Phys.Rev. Let

    Pulmonary fissure integrity and collateral ventilation in COPD patients

    Get PDF
    Purpose: To investigate whether the integrity (completeness) of pulmonary fissures affects pulmonary function in patients with chronic obstructive pulmonary disease (COPD). Materials and Methods: A dataset consisting of 573 CT exams acquired on different subjects was collected from a COPD study. According to the global initiative for chronic obstructive lung disease (GOLD) criteria, these subjects (examinations) were classified into five different subgroups, namely non-COPD (222 subjects), GOLD-I (83 subjects), GOLD-II (141 subjects), GOLD-III (63 subjects), and GOLD-IV (64 subjects), in terms of disease severity. An available computer tool was used to aid in an objective and efficient quantification of fissure integrity. The correlations between fissure integrity, and pulmonary functions (e.g., FEV1, and FEV1/FVC) and COPD severity were assessed using Pearson and Spearman's correlation coefficients, respectively. Results: For the five sub-groups ranging from non-COPD to GOLD-IV, the average integrities of the right oblique fissure (ROF) were 81.8%, 82.4%, 81.8%, 82.8%, and 80.2%, respectively; the average integrities of the right horizontal fissure (RHF) were 62.6%, 61.8%, 62.1%, 62.2%, and 62.3%, respectively; the average integrities of the left oblique fissure (LOF) were 82.0%, 83.2%, 81.7%, 82.0%, and 78.4%, respectively; and the average integrities of all fissures in the entire lung were 78.0%, 78.6%, 78.1%, 78.5%, and 76.4%, respectively. Their Pearson correlation coefficients with FEV1 and FE1/FVC range from 0.027 to 0.248 with p values larger than 0.05. Their Spearman correlation coefficients with COPD severity except GOLD-IV range from -0.013 to -0.073 with p values larger than 0.08. Conclusion: There is no significant difference in fissure integrity for patients with different levels of disease severity, suggesting that the development of COPD does not change the completeness of pulmonary fissures and incomplete fissures alone may not contribute to the collateral ventilation. © 2014 Pu et al

    Self Injection length in La0.7 Ca0.3 Mno3-YBa 2Cu3O7-d ferromagnet- superconductor multi layer thin films

    Get PDF
    We have carried out extensive studies on the self-injection problem in barrierless heterojunctions between La0.7Ca0.3MnO3 (LCMO) and YBa2Cu3O7-d (YBCO). The heterojunctions were grown in situ by sequentially growing LCMO and YBCO films on LaAlO3 (LAO) substrate using a pulsed laser deposition (PLD) system. YBCO micro-bridges with 64 microns width were patterned both on the LAO (control) and LCMO side of the substrate. Critical current, Ic, was measured at 77K on both the control side as well as the LCMO side for different YBCO film thickness. It was observed that while the control side showed a Jc of ~2 x 10E6 A/ cm2 the LCMO side showed about half the value for the same thickness (1800 A). The difference in Jc indicates that a certain thickness of YBCO has become 'effectively' normal due to self-injection. From the measurement of Jc at two different thickness' (1800 A and 1500 A) of YBCO both on the LAO as well as the LCMO side, the value of self-injection length (at 77K) was estimated to be ~900 A self-injection length has been quantified. A control experiment carried out with LaNiO3 deposited by PLD on YBCO did not show any evidence of self-injection.Comment: 6 pages, one figure in .ps forma

    Electric-field controlled spin reversal in a quantum dot with ferromagnetic contacts

    Get PDF
    Manipulation of the spin-states of a quantum dot by purely electrical means is a highly desirable property of fundamental importance for the development of spintronic devices such as spin-filters, spin-transistors and single-spin memory as well as for solid-state qubits. An electrically gated quantum dot in the Coulomb blockade regime can be tuned to hold a single unpaired spin-1/2, which is routinely spin-polarized by an applied magnetic field. Using ferromagnetic electrodes, however, the properties of the quantum dot become directly spin-dependent and it has been demonstrated that the ferromagnetic electrodes induce a local exchange-field which polarizes the localized spin in the absence of any external fields. Here we report on the experimental realization of this tunneling-induced spin-splitting in a carbon nanotube quantum dot coupled to ferromagnetic nickel-electrodes. We study the intermediate coupling regime in which single-electron states remain well defined, but with sufficiently good tunnel-contacts to give rise to a sizable exchange-field. Since charge transport in this regime is dominated by the Kondo-effect, we can utilize this sharp many-body resonance to read off the local spin-polarization from the measured bias-spectroscopy. We show that the exchange-field can be compensated by an external magnetic field, thus restoring a zero-bias Kondo-resonance, and we demonstrate that the exchange-field itself, and hence the local spin-polarization, can be tuned and reversed merely by tuning the gate-voltage. This demonstrates a very direct electrical control over the spin-state of a quantum dot which, in contrast to an applied magnetic field, allows for rapid spin-reversal with a very localized addressing.Comment: 19 pages, 11 figure

    Spin-accumulation in small ferromagnetic double barrier junctions

    Full text link
    The non-equilibrium spin accumulation in ferromagnetic double barrier junctions is shown to govern the transport in small structures. Transport properties of such systems are described by a generalization of the theory of the Coulomb blockade. The spin accumulation enhances the magnetoresistance. The transient non-linear transport properties are predicted to provide a unique experimental evidence of the spin-accumulation in the form of a reversed current on time scales of the order of the spin-flip relaxation time.Comment: 4 pages, 3 figures, to appear in PR

    Boltzmann Equations for Spin and Charge Relaxations in Superconductors

    Full text link
    In a superconductor coupled with a ferromagnetic metal, spin and charge imbalances can be induced by injecting spin-polarized electron current from the ferromagnetic metal. We theoretically study a nonequilibrium distribution of quasiparticles in the presence of spin and charge imbalances. We show that four distribution functions are needed to characterize such a nonequilibrium situation, and derive a set of linearized Boltzmann equations for them by extending the argument by Schmid and Sch\"{o}n based on the quasiclassical Green's function method. Using the Boltzmann equations, we analyze the spin imbalance in a thin superconducting wire weakly coupled with a ferromagnetic electrode. The spin imbalance induces a shift δμ\delta\mu (δμ- \delta \mu) of the chemical potential for up-spin (down-spin) quasiparticles. We discuss how δμ\delta \mu is relaxed by spin-orbit impurity scattering.Comment: 16 pages, 2 figure

    Spin current in ferromagnet/insulator/superconductor junctions

    Full text link
    A theory of spin polarized tunneling spectroscopy based on a scattering theory is given for tunneling junctions between ferromagnets and d-wave superconductors. The spin filtering effect of an exchange field in the insulator is also treated. We clarify that the properties of the Andreev reflection are largely modified due to a presence of an exchange field in the ferromagnets, and consequently the Andreev reflected quasiparticle shows an evanescent-wave behavior depending on the injection angle of the quasiparticle. Conductance formulas for the spin current as well as the charge current are given as a function of the applied voltage and the spin-polarization in the ferromagnet for arbitrary barrier heights. It is shown that the surface bound states do not contribute to the spin current and that the zero-bias conductance peak expected for a d-wave superconductor splits into two peaks under the influence of the exchange interaction in the insulator.Comment: 14 pages, 11 figure

    Spin Bottlenecks in the Quantum Hall Regim

    Full text link
    We present a theory of time-dependent tunneling between a metal and a partially spin-polarized two-dimensional electron system (2DES). We find that the leakage current which flows to screen an electric field between the metal and the 2DES is the sum of two exponential contributions whose relative weights depend on spin-dependent tunneling conductances, on quantum corrections to the electrostatic capacitance of the tunnel junction, and on the rate at which the 2DES spin-polarization approaches equilibrium. For high-mobility and homogeneous 2DES's at Landau level filling factor ν=1\nu=1, we predict a ratio of the fast and slow leakage rates equal to (2K+1)2(2K+1)^2 where KK is the number of reversed spins in the skyrmionic elementary charged excitations.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
    corecore