131 research outputs found

    α-Mangostin Effectively Inhibits Chikungunya Virus Replication in HepG2 Cells

    Get PDF
    Chikungunya virus (CHIKV) is an arthropod-transmitted Alphavirus endemic to countries in Africa and Asia, including Indonesia, which causes debilitating arthralgia which can last several years. The rapid spread of CHIKV to new areas makes the discovery of antiviral agents a high priority. α-mangostin is a xanthone from mangosteen (Garcinia mangostana) pericarp and has antiviral activity against Hepatitis C and Dengue viruses. We investigated the antiviral activity of α-mangostin against CHIKV in HepG2 cells in pre-, post- and combination treatments compared to the common antiviral medicine ribavirin, as well their cytotoxicity. Our results show dose-responsive reductions in viral titer in all treatment regimes, with post- and combination treatments being more effective than pre-treatment only (IC50 = 7.79, 5.99 and 6.39 µM, respectively), but with poor specificity (SI = 1.39, 1.81 and 1.70, respectively) compared to ribavirin. Neither compound showed a direct virucidal effect. These results suggest α-mangostin effectively inhibits CHIKV replication in this cell line

    Infeksi Virus Dengue pada Nyamuk Aedes aegypti Menggunakan Artificial Blood Feeding dan Deteksi Virus Dengue Menggunakan Teknik Molekular

    Get PDF
    Abstract. Artificial blood-feeding using the parafilm-M membrane can be used as an alternative solution andsubstitute live animals as a source of blood. This method is not only be used for blood-feeding but also to infectthe dengue virus (DENV) to mosquitoes. This study was aimed to determine the effectiveness artificial bloodfeeding using parafilm-M membrane in Aedes mosquitoes originated in Indonesia and determine the positivityof mosquitoes infected by Indonesia DENV-1. DENV-1 was isolated from patient and propagated in Vero cellculture. The feeding was done in cardboard cups after mosquitos have been starved for 4-17 hours before beingfed with human blood. A conical 50ml tube was prepared, and a hole was created in the tube lid. The tubeopening was covered with parafilm. Glycerol was added into conical tube and heated in water bath for an hourat 55oC. A mixture of blood and DENV-1 was made with concentration of 10%. Detection of DENV in bloodfedmosquitos was carried out by using Simplexa Dengue Real-Time RT-PCR assay. The results showed thatthe prevalence of blood-fed mosquitoes reached 66.67% with fasting period for 17 hours. Blood feedingmosquitoes are affected by duration of fasting period, blood-feeding time, and attractants from human skinrubbed into parafilm-M membrane. The prevalence of blood-fed Ae. aegypti infected by DENV was 20.83%.This study provides information on the effectiveness of artificial parafilm membrane blood-feeding in alaboratory setting that will be useful for vector control study in Indonesia

    Concurrent infections of dengue virus serotypes in Bali, Indonesia

    Get PDF
    Objective: To describe cases of dengue virus (DENV) concurrent infections in patients from both local and international traveler visiting Bali, Indonesia. Results: During a hospital-based study, 260 patients (from 161 local and 99 international traveler patients) were recruited. Among them, 190 were positive by DENV RT-PCR in which eight patients (five local and three international travelers) detected as having concurrent infections by two different DENV serotypes. Among the eight patients, the common dengue symptoms diagnosed were fever, headache, and myalgia. Six cases (75%) were diagnosed with dengue fever (DF) while two cases (25%) manifested with bleeding and were diagnosed with dengue hemorrhagic fever (DHF) grade 1. The DENVs concurrent infections involved all four DENV serotypes known to be circulating in Bali. Although cases of DENV concurrent infections have been implicated with severe manifestation, we observed that most of concurrent infections cases in our study were of mild clinical manifestation, that may be related to the changing of DENV serotype predominance which is occurring in Bali, Indonesia

    Antiviral activities of curcumin and 6‐gingerol against infection of four dengue virus serotypes in A549 human cell line in vitro

    Get PDF
    Dengue virus (DENV) is the most geographically widespread arbovirus causing dengue disease epidemics in tropical and subtropical regions. Nature provides abundant plants as a source for lead molecules against various diseases including DENV infection. We investigated the antiviral effect of curcumin and 6‐gingerol, the major active constituent of turmeric (Curcuma longa Linn.) and ginger (Zingiber officinale Roscoe), respectively, against all four serotypes of DENV infecting human lung epithelial carcinoma (A549) cell line in vitro. Both compounds generated cell cytotoxicity to A549 cells at CC50 values of 108 µM for curcumin and 210 µM for 6‐gingerol. The compound curcumin showed antiviral properties as described by IC50 of 20.60, 13.95, 25.54, and 12.35 µM, while 6‐gingerol of 14.70, 14.17, 78.76, and 112.84 µM for DENV‐1, ‐2, ‐3, and ‐4, respectively. Different levels of antiviral properties were observed between DENV serotypes. Our findings suggest that the antiviral assay of compounds against DENV should be performed to all four serotypes and not limited to a particular serotype. In conclusion, curcumin and 6‐gingerol exhibit antiviral properties against DENV infection and could provide a new therapeutic approach for dengue disease treatment strategies

    Assessment of dengue and COVID-19 antibody rapid diagnostic tests cross-reactivity in Indonesia.

    Get PDF
    BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic remains ongoing around the world, including in areas where dengue is endemic. Dengue and COVID-19, to some extent, have similar clinical and laboratory features, which can lead to misdiagnosis, delayed treatment and patient's isolation. The use of rapid diagnostic tests (RDT) is easy and convenient for fast diagnosis, however there may be issues with cross-reactivity with antibodies for other pathogens. METHODS: We assessed the possibility of cross-reactivity between SARS-CoV-2 and dengue antibodies by: (1) testing five brands of COVID-19 IgG / IgM RDTs on 60 RT-PCR-confirmed dengue samples; (2) testing 95 RT-PCR-confirmed COVID-19 samples on dengue RDT; and (3) testing samples positive for COVID-19 IgG and/or IgM on dengue RDT. RESULTS: We observed a high specificity across all five brands of COVID-19 RDTs, ranging from 98.3 to 100%. Out of the confirmed COVID-19 samples, one patient tested positive for dengue IgM only, another tested positive for dengue IgG only. One patient tested positive for dengue IgG, IgM, and NS1, suggesting a co-infection. In COVID-19 IgG and/or IgM samples, 6.3% of COVID-19 IgG-positive samples also tested positive for dengue IgG, while 21.1% of COVID-19 IgM-positive samples also tested positive for dengue IgG. CONCLUSION: Despite the high specificity of the COVID-19 RDT, we observed cross-reactions and false-positive results between dengue and COVID-19. Dengue and COVID-19 co-infection was also found. Health practitioners in dengue endemic areas should be careful when using antibody RDT for the diagnosis of dengue during the COVID-19 pandemic to avoid misdiagnosis

    Dengue infection in international travellers visiting Bali, Indonesia

    Get PDF
    Background: Dengue, an acute febrile illness caused by infection with dengue virus (DENV), is endemic in Bali, Indonesia. As one of the world’s most popular tourist destinations, Bali is regularly visited by domestic and international travellers, who are prone to infection by endemic pathogens, including DENV. Currently, limited data are available on the characteristics of dengue in travellers visiting Bali. Information on the epidemiology and virological aspects of dengue in these tourists is important to gain a better understanding of the dengue disease in international travellers. Methods: We performed a prospective cross-sectional dengue study involving foreign travellers visiting Bali, Indonesia in the period of 2015–17. Patients presenting at Kasih Ibu Hospital with fever and clinical symptoms of dengue were asked to participate in the study. Clinical and laboratory assessments were performed and sera were collected for molecular analysis, which included DENV serotyping, genome sequencing and phylogenetic analysis. Results: Among the 201 patients recruited, dengue was confirmed in 133 (66.2%) of them, based on detection of NS1 antigen and/or viral RNA. Of these, 115 (86.5%) manifested dengue fever (DF) and 18 (13.5%) dengue haemorrhagic fever (DHF). The temporal predominance of infecting DENV serotype was DENV-2 (48.7%), followed by DENV-3 (36.1%), DENV-1 (9.2%) and DENV-4 (3.4%). Phylogenetic analysis of DENV based on envelope gene sequences revealed that the source of DENVs was local endemic viruses. Conclusion: Our study confirms that dengue is one of the causes of fever in travellers visiting Bali. Although it is a cause of significant morbidity, the majority of patients only experienced mild DF, with only a small proportion developing DHF. We revealed that DENVs isolated were autochthonous. Accurate diagnosis, preventive measures and continuous disease surveillance will be useful for better management of dengue infection in travellers

    Whole genome sequencing of Indonesian dengue virus isolates using next-generation sequencing

    Get PDF
    Indonesia is a tropical country and hyperendemic for dengue. The disease prevalently affected Indonesian and it caused high morbidity and substantial economic burden. This vector-borne viral disease is caused by infection of dengue viruses (DENVs), which are the member of Flaviviridae family. While most of dengue studies in Indonesia focused on the epidemiology, the clinical aspects, the vectors, and to certain extent the virology, there were still gaps in the DENVs genomic aspects. Considering their high mutation rate, the DENVs were known for their high genetic diversity and it might affect the characteristics of the viruses. Comprehensive DENV genomic data were thus important for many aspects of disease management, including virus surveillance, pathogenesis, diagnostics, antiviral drug design, and vaccine development. We established in this study a method for DENV whole genome sequencing using the advanced Next-Generation Sequencing (NGS) and Nextera XT DNA library preparation kit, coupled with simplified bioinformatic analysis methods. The Indonesian DENVs from four serotypes were isolated from patients’ sera, while library was prepared from enriched templates and sequenced using Illumina NGS. Our study highlighted the potential of a robust NGS method in producing whole genome sequence of DENVs, which would be important for future dengue studies

    An investig-ation into the epidemiology of chikungunya virus across neglected regions of Indonesia

    Get PDF
    Funder: US-CDCBackground: Chikungunya virus (CHIKV) is an important emerging and re-emerging public health problem worldwide. In Indonesia, where the virus is endemic, epidemiological information from outside of the main islands of Java and Bali is limited. Methodology/Principal Findings: Four hundred and seventy nine acutely febrile patients presenting between September 2017–2019 were recruited from three city hospitals situated in Ambon, Maluku; Banjarmasin, Kalimantan; and Batam, Batam Island as part of a multi-site observational study. CHIKV RNA was detected in a single serum sample while a separate sample was IgM positive. IgG seroprevalence was also low across all three sites, ranging from 1.4–3.2%. The single RT-PCR positive sample from this study and 24 archived samples collected during other recent outbreaks throughout Indonesia were subjected to complete coding region sequencing to assess the genetic diversity of Indonesian strains. Phylogenetic analysis revealed all to be of a single clade, which was distinct from CHIKV strains recently reported from neighbouring regions including the Philippines and the Pacific Islands. Conclusions/Significance: Chikungunya virus strains from recent outbreaks across Indonesia all belong to a single clade. However, low-level seroprevalence and molecular detection of CHIKV across the three study sites appears to contrast with the generally high seroprevalences that have been reported for non-outbreak settings in Java and Bali, and may account for the relative lack of CHIKV epidemiological data from other regions of Indonesia

    Assessment of a multiplex PCR and Nanopore-based method for dengue virus sequencing in Indonesia

    Get PDF
    Abstract: Background: Dengue virus (DENV) infects hundreds of thousands of people annually in Indonesia. However, DENV sequence data from the country are limited, as samples from outbreaks must be shipped across long-distances to suitably equipped laboratories to be sequenced. This approach is time-consuming, expensive, and frequently results in failure due to low viral load or degradation of the RNA genome. Methods: We evaluated a method designed to address this challenge, using the ‘Primal Scheme’ multiplex PCR tiling approach to rapidly generate short, overlapping amplicons covering the complete DENV coding-region, and sequencing the amplicons on the portable Nanopore MinION device. The resulting sequence data was assessed in terms of genome coverage, consensus sequence accuracy and by phylogenetic analysis. Results: The multiplex approach proved capable of producing near complete coding-region coverage from all samples tested (x¯ = 99.96%, n = 18), 61% of which could not be fully amplified using the current, long-amplicon PCR, approach. Nanopore-generated consensus sequences were found to be between 99.17–99.92% identical to those produced by high-coverage Illumina sequencing. Consensus accuracy could be improved by masking regions below 20X coverage depth (99.69–99.92%). However, coding-region coverage was reduced at this depth (x¯ = 93.48%). Nanopore and Illumina consensus sequences generated from the same samples formed monophyletic clades on phylogenetic analysis, and Indonesian consensus sequences accurately clustered by geographical origin. Conclusion: The multiplex, short-amplicon approach proved superior for amplifying DENV genomes from clinical samples, particularly when the virus was present at low concentrations. The accuracy of Nanopore-generated consensus sequences from these amplicons was sufficient for identifying the geographic origin of the samples, demonstrating that the approach can be a useful tool for identifying and monitoring DENV clades circulating in low-resource settings across Indonesia. However, the inaccuracies in Nanopore-generated consensus sequences mean that the approach may not be appropriate for higher resolution transmission studies, particularly when more accurate sequencing technologies are available
    corecore