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1. Introduction
  

	 Chikungunya virus (CHIKV) is a positive single-
strand RNA virus from the Alphavirus genus 
transmitted through the bite of Aedes mosquitoes, 
which now circulates in more than 60 countries 
in Asia, Africa, Europe and the Americas, including 
Indonesia (Silva and Dermody 2017; Vu et al. 2017; 
Harapan et al. 2019). Infection causes chikungunya 
fever (CHIKF), which may result in significant liver 
damage with associated diabetes mellitus, as well 
as debilitating Guillain-Barré syndrome requiring 
respiratory support, along with a mortality risk, 
especially in old age (Economopoulou et al. 2009; 
Lebrun et al. 2009; Ganesan et al. 2017). Recent 
increases of fatal cases of CHIKF are largely attributed 
to better reporting and naivete of populations rather 
than an increased risk, but repeated and independent 
occurrences of mutations that increase CHIKV 
replication in Aedes albopictus suggest that the virus 
will continue to spread to newer populations, as this 
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species is well adapted for global spread driven by 
human activity (Schuffenecker et al. 2006; Benedict 
et al. 2007; Tsetsarkin et al. 2007, 2009, 2014; 
Vazeille et al. 2007; de Lamballerie et al. 2008; Higgs 
and Ziegler 2010). As there is no specific drug or 
approved vaccine against CHIKF, treatment is limited 
to symptom alleviation using analgesic-antipyretic 
drugs, with ribavirin being the only FDA-licensed 
drug that has been tested in humans and has shown 
good results in patients, though it is only effective 
early in the CHIKV replication cycle (Galán-Huerta et 
al. 2015; Cunha and Trinta 2017; Silva and Dermody 
2017; Vu et al. 2017). Given the need for new antiviral 
agents, the xanthone α-mangostin from the pericarp 
of the mangosteen (Garcinia mangostana Linn.) fruit 
shows promise, successfully inhibiting replication of 
against Hepatitis C virus (HCV) (Choi et al. 2014) and 
dengue virus (DENV) (Subudhi et al. 2018; Sugiyanto 
et al. 2019; Panda et al. 2021), with in silico analyses 
suggesting a potential action on SARS-CoV-2 
(Hidayat et al. 2021). Here we report our findings on 
the antiviral activity of α-mangostin against CHIKV in 
HepG2 cells. α-mangostin and ribavirin action were 
tested in post-, pre-, and full treatment scenarios in 
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order to better identify their mechanism of antiviral 
action. Effective antiviral concentrations were 
compared to their relative cytotoxicity in these cells 
to give a standardized measure of safety and efficacy.

2. Materials and Methods

	 HepG2 and BHK-21 cells were obtained from ATCC 
and maintained in RPMI-1640 (Gibco 11875093). 
CHIKV strain JMB-192 (isolated from a patient in 
Jambi, Indonesia in 2015 (Sasmono et al. 2017) was 
propagated using Vero CCL-81 cells. The cytotoxicity 
of α-mangostin (Sigma-Aldrich M3824), ribavirin 
(Sigma-Aldrich R9644) and DMSO (Applichem 
A3672) in HepG2 was assessed using the Vybrant 
MTT Cell Proliferation kit (Thermo-Scientific V13154). 
The virucidal and antiviral activity of α-mangostin 
and ribavirin in pre-, post- and full treatment 
regimens were assessed using CHIKV plaque assay 
at multiplicity of infection (MOI) of 1 as previously 
described (Hayati et al. 2021). Statistical analysis was 
done using GraphPad Prism v.9, with two-way and 
one-way ANOVAs for antiviral and virucidal effects, 
respectively, with Dunnet’s-adjusted p<0.05 being 
considered significant.

3. Results

3.1. Cytotoxicity assay of α-mangostin
	 To assess the cytotoxic activity of α-mangostin 
in HepG2 cells, we treated the cells with various 
concentrations of α-mangostin. Our assay reveals 
a dose-responsive pattern of α-mangostin, with 
concentrations ≤7 µM being non-toxic, with 
cell viability remaining above 80% compared to 
control after 48 hours (Figure 1A). Above 10 µM, 
the compound proved significantly toxic, with cell 
viability reaching 0% at ≥20 µM, while DMSO had no 
major cytotoxic impacts at the tested concentrations 
(0.4%, data not shown). When plotted in a logistic 
curve (R2 = 0.965, Figure 1A), we extrapolate a 50% 
cytotoxic concentration (CC50) of 10.84 µM. Similarly, 
ribavirin showed a dose-responsive toxicity, with 
significant cell death at ≥20 µg/ml and a CC50 of 88.07 
µg/ml (R2 = 0.958, Figure 1B), although the falloff 
in cell viability occurred slower with increasing 
concentrations compared to α-mangostin.

3.2. Antiviral activity of α-mangostin
	 The inhibition of CHIKV growth by α-mangostin 
was assessed using CHIKV plaque assay. Upon 

treatment with α-mangostin, the growth of CHIKV 
was significantly affected by both treatment 
type (pre-, post-, and full treatment) and the 
concentration of the compound (two-way ANOVA 
p = 0.046 and <0.001, respectively). The addition 
of α-mangostin caused a significant reduction in 
the CHIKV titer in all three treatments at 12.5 µM, 
with no effect at only 3.125 µM (Figure 2A). At lower 
concentrations, pre-treatment was less effective, 
with full treatment showing the greatest inhibition 
of CHIKV at the higher concentrations, as reflected 
by extrapolated 50% inhibitory concentration (IC50) 
values of 7.79 µM, 5.99 µM, and 6.39 µM for pre-, full 
and post treatments, respectively (Table 1). Unlike 
α-mangostin, ribavirin inhibitory action was more 
prominent in full- and post-treatments assays with 
both 10 µg/ml and 20 µg/ml significantly inhibited 
the CHIKV growth. The ribavirin pre-treatment assay 
did not have any effect on viral growth (Figure 2B) 
and requiring a far higher IC50 (Table 1).
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Figure 1. Cytotoxicity of compounds in HepG2 cells. Mean 
cell viability values after 18 hours, errors bars 
represent SD. Data are representative of two 
independent experiments
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Figure 2. α-mangostin and ribavirin antiviral assay results. Mean CHIKV titer reduction induced by addition of either 
α-mangostin (α-M) (A) or ribavirin (RBV) (B). Error bars represent SD. ns = not significant, * = p<0.05, ** = p<0.01, 
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4. Discussion

	 In this study, we assessed the potential antiviral 
activity of α-mangostin against CHIKV in vitro. In 
terms of cell death, the patterns of cytotoxicity of 
α-mangostin in our study are generally in accordance 
with the existing literature, as previous studies have 
shown that α-mangostin at a concentration of 5-10 
µM induces cell death in HepG2 cells (Wudtiwai 
et al. 2018). This cell death is also affected by the 
incubation time, as 24- and 48-hour incubations 
resulted in CC50 measurements of 5.5 µM and 20.44 
µM (8.39 µg/ml), respectively (Fazry et al. 2018; 
Wudtiwai et al. 2018).
	 Other studies have also shown that α-mangostin 
can induce significant cell death with a concentration 
of ≥10 µM in A549 cells (Phan et al. 2018) and ≥20 
µM in HeLa cells (Lee et al. 2017), which are also 
human cancer cell lines. The anticancer effects of 
α-mangostin have been observed extensively both in 
vitro in a variety of human cancer cell lines (Chao et 
al. 2011; Wang et al. 2011; Shan et al. 2014; Won et 
al. 2014; Lee et al. 2017; Mohamed et al. 2017; Fazry 
et al. 2018; Phan et al. 2018; Wudtiwai et al. 2018; 
Markowicz et al. 2019), as well as in vivo in xenograft 
models (Johnson et al. 2012; Hsieh et al. 2013; Lee 
et al. 2016). In HepG2 cells, α-mangostin induces 
apoptosis and necrosis, possibly mediated by the 
caspase-dependent pathway (extrinsically and 
intrinsically) through caspase activation (Mohamed 
et al. 2017). Administration of α-mangostin has been 
observed to activate caspase-3, -8 and -9, and block 
the ERK1/2 and AKT signaling pathways in these cells 
(Fazry et al. 2018; Wudtiwai et al. 2018). Additionally, 
α-mangostin has been found to be a potent agonist 
of human stimulator of interferon genes (STING) 
receptor, and stimulates conversion of macrophages 
into pro-inflammatory versions, both of which likely 
contribute to its anticancer and antiviral action 
(Zhang et al. 2018).
	 Previous studies have also noted the dose-
dependent cytotoxicity of ribavirin, a known potent 
CHIKV antiviral, which is traced to its inhibition of 

cell proliferation, namely through G1 arrest following 
16-48 hours of exposure (Liu et al. 2012). In this study, 
we assessed the cytotoxicity of ribavirin in HepG2 
cells. Out data show that ribavirin exerts its cytotoxic 
effect in HepG2 cells at CC50 of 88.07 µg/ml. Previous 
measurements of CC50 values of ribavirin following a 
three-day incubation were 65.01 µg/ml and 50.21 µg/
ml in Vero and A549 cell lines, respectively (Franco 
et al. 2018), which puts our findings roughly in line 
with the literature. Ribavirin toxicity varies between 
cell lines, as different cell types have variability in 
intracellular metabolic rates and host cell kinases, 
causing variations in intracellular concentrations 
(Liu et al. 2012).
	 In terms of antiviral activity, our results show 
a strong inhibition of CHIKV replication at higher 
concentrations of α-mangostin. The reported IC50 
values obtained in this study are in line with results 
against other viruses, as previous α-mangostin studies 
demonstrated its ability to inhibit DENV production 
in HepG2 cells in a post treatment scenario (Tarasuk 
et al. 2017) and inhibit DENV replication in PBMC cells 
with an IC50 of 5.77 µM after a 48-hour incubation 
(Sugiyanto et al. 2019). α-mangostin has also been 
found to inhibit replication of HCV, with a 50% 
effective concentration (EC50) of 6.3 µM (Choi et al. 
2014). Another study (Shaneyfelt et al. 2006) showed 
that α-mangostin can inhibit rotavirus infectivity in 
pre-treatment and inhibit virus replication in post-
treatment, possibly by stimulating inflammatory 
and antiviral cellular pathways, namely through 
NF-κB activation and stimulation of IL-8 secretion 
(Shaneyfelt et al. 2006).
	 A previous evaluation of α-mangostin against 
CHIKV (Patil et al. 2021) did not report an IC50 value, 
although it showed ≥89% reduction of viral titer 
at 8 µM in all treatment, which is a stronger effect 
than reported here. These differences are likely 
to originate from differences in cell lines (Vero E6 
vs. HepG2) and CHIKV strains, as well as the use 
of a different purity of α-mangostin (83% vs ≥98% 
in this study). This study shows a similar pattern 
when comparing treatment types, with the full 
combined treatment producing the strongest effect. 
Their molecular docking analysis suggested that 
α-mangostin binds strongly to CHIKV replication 
complexes, including its ns4p RNA-dependent RNA 
polymerase (RdRp), further suggesting the antiviral 
effects of the compound are due to its inhibition of 
CHIKV replication. While molecular docking also 

Table 1. IC50 and SI value of α-mangostin and ribavirin
α-mangostin Ribavirin

IC50 (µM) IC50 (µg/ml)SI value  SI value  

7.79
5.99
6.39

55.62
7.08
7.63

1.39
1.81
1.70

1.58
12.44
11.54

Pre-treatment
Full treatment
Post-treatment
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suggested that α-mangostin may inhibit CHIKV entry 
into cells by targets on the E1 and E2 domains, as 
it does in rotaviruses (Shaneyfelt et al. 2006), our 
findings do not support this suggestion. 
	 Our results also show ribavirin to be a potent 
inhibitor of CHIKV replication, with a significantly 
reduced effect if compound exposure occurs before 
infection (Figure 2B). This is in line with previous 
findings, although some variability may be expected 
due to the use of different cells, MOIs, virus strains 
and incubation times between studies (Pabbaraju 
et al. 2019). Similar to our results here, studies 
using the post treatment condition with three-day 
incubation reported an IC50 values of 2.58 µg/ml in 
Huh-7 cells (Franco et al. 2018), and 3.79 µg/ml in 
Vero cells (Rothan et al. 2015). Just as in our study, 
pretreatment with ribavirin has been observed to 
produce a much weaker response, with the IC50 value 
in Vero cells reported at 83.3 µg/ml following 18 
hours incubation (Briolant et al. 2004). These results 
support observations that ribavirin exerts its antiviral 
action by inhibiting viral genome replication by the 
CHIKV RdRp (Crotty et al. 2001, 2002; Graci and 
Cameron 2002).
	 To compare the relative effective use and safety 
of each compound, we calculated the ratio of IC50 to 
CC50, also known as the selectivity index (SI). High SI 
values are always desirable to proceed from in vitro 
to in vivo studies, as SI values greater than 1 indicate 
more benefits than risks (Subudhi et al. 2018). The SI 
values of α-mangostin and ribavirin at full treatment 
were greater than that of pre-treatment and post-
treatment (Table 1), indicating that this treatment 
produces the highest effective benefits and safety. 
The SI value of α-mangostin was also lower in all 
cases than that of ribavirin, indicating that ribavirin 
demonstrates better efficacy and safety than 
α-mangostin. When comparing the antiviral activity 
of α-mangostin to its toxicity using the selectivity 
index, it becomes clear that this compound provides 
a rather narrow therapeutic window. While there 
is no fixed requirements to consider a compound 
sufficiently safe, other antiviral compounds already 
approved for human use have shown higher SI values 
(reviewed in (Hucke and Bugert 2020)). However, 
previous in vivo evaluations of α-mangostin did not 
remark on toxicity in mice at doses of up to 138 mg/kg 
(Parkhe et al. 2020; Rana et al. 2020; Patil et al. 2021), 

suggesting that this may not be a major concern for 
future research.
	 The results obtained from the virucidal assay 
showed that neither α-mangostin nor ribavirin had 
a direct virucidal effect on CHIKV (ANOVA p = 0.12 
and 0.99 for α-M and RBV, respectively), with no 
significant differences in titer compared to control 
in any case (not shown). This is in accordance with 
previous research (Shaneyfelt et al. 2006; Choi et al. 
2014; Tarasuk et al. 2017), which showed that the 
antiviral activity of α-mangostin occurs by inhibiting 
viral replication. This is reflected in our results, as 
antiviral activity occurs when the test compound is 
added to cells that have already been infected with 
the virus. These results are not, however, sufficient 
to determine at which exact point in the replication 
cycle this inhibition occurs, as more direct assays 
would be necessary to do this, such as has been 
done with other antiviral compound screening of 
alphaviruses (Varghese et al. 2022). While molecular 
docking of α-mangostin with CHIKV has identified 
some potential binding sites, as mentioned above 
(Patil et al. 2021), these would need confirmation in 
an in vitro setting in future studies.
	 This study has demonstrated that α-mangostin 
effectively inhibits CHIKV replication in HepG2 
cells in a concentration-dependent manner. We 
have shown that the ‘full treatment’ condition of 
incubating the virus with the compound before 
infection and adding the compound after infection 
to be the most effective. Our results also show that 
ribavirin consistently demonstrates a better efficacy 
and safety profile than α-mangostin in the tested 
treatments. We also showed that neither α-mangostin 
nor ribavirin have any direct virucidal effect against 
CHIKV, supporting the theory that these compounds 
inhibit viral replication in the cell.
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