69 research outputs found

    Upregulation of inducible NO synthase by exogenous adenosine in vascular smooth muscle cells activated by inflammatory stimuli in experimental diabetes

    Get PDF
    BACKGROUND: Adenosine has been shown to induce nitric oxide (NO) production via inducible NO synthase (iNOS) activation in vascular smooth muscle cells (VSMCs). Although this is interpreted as a beneficial vasodilating pathway in vaso-occlusive disorders, iNOS is also involved in diabetic vascular dysfunction. Because the turnover of and the potential to modulate iNOS by adenosine in experimental diabetes have not been explored, we hypothesized that both the adenosine system and control of iNOS function are impaired in VSMCs from streptozotocin-diabetic rats. METHODS: Male Sprague-Dawley rats were injected with streptozotocin once to induce diabetes. Aortic VSMCs from diabetic and nondiabetic rats were isolated, cultured and exposed to lipopolysaccharide (LPS) plus a cytokine mix for 24 h in the presence or absence of (1) exogenous adenosine and related compounds, and/or (2) pharmacological agents affecting adenosine turnover. iNOS functional expression was determined by immunoblotting and NO metabolite assays. Concentrations of adenosine, related compounds and metabolites thereof were assayed by HPLC. Vasomotor responses to adenosine were determined in endothelium-deprived aortic rings. RESULTS: Treatment with adenosine-degrading enzymes or receptor antagonists increased iNOS formation in activated VSMCs from nondiabetic and diabetic rats. Following treatment with the adenosine transport inhibitor NBTI, iNOS levels increased in nondiabetic but decreased in diabetic VSMCs. The amount of secreted NO metabolites was uncoupled from iNOS levels in diabetic VSMCs. Addition of high concentrations of adenosine and its precursors or analogues enhanced iNOS formation solely in diabetic VSMCs. Exogenous adenosine and AMP were completely removed from the culture medium and converted into metabolites. A tendency towards elevated inosine generation was observed in diabetic VSMCs, which were also less sensitive to CD73 inhibition, but inosine supplementation did not affect iNOS levels. Pharmacological inhibition of NOS abolished adenosine-induced vasorelaxation in aortic tissues from diabetic but not nondiabetic animals. CONCLUSIONS: Endogenous adenosine prevented cytokine- and LPS-induced iNOS activation in VSMCs. By contrast, supplementation with adenosine and its precursors or analogues enhanced iNOS levels in diabetic VSMCs. This effect was associated with alterations in exogenous adenosine turnover. Thus, overactivation of the adenosine system may foster iNOS-mediated diabetic vascular dysfunction

    Estrogen, angiogenesis, immunity and cell metabolism: Solving the puzzle

    Get PDF
    Estrogen plays an important role in the regulation of cardiovascular physiology and the immune system by inducing direct effects on multiple cell types including immune and vascular cells. Sex steroid hormones are implicated in cardiovascular protection, including endothelial healing in case of arterial injury and collateral vessel formation in ischemic tissue. Estrogen can exert potent modulation effects at all levels of the innate and adaptive immune systems. Their action is mediated by interaction with classical estrogen receptors (ERs), ER\u3b1 and ER\u3b2, as well as the more recently identified G-protein coupled receptor 30/G-protein estrogen receptor 1 (GPER1), via both genomic and non-genomic mechanisms. Emerging data from the literature suggest that estrogen deficiency in menopause is associated with an increased potential for an unresolved inflammatory status. In this review, we provide an overview through the puzzle pieces of how 17\u3b2-estradiol can influence the cardiovascular and immune systems

    Activation phenotypes of human monocyte-derived macrophages: methodological approaches and pharmacological modulation by curcumin analogues

    Get PDF
    Under normal conditions macrophages provide immune surveillance and host defense in tissues to maintain homeostasis. However, upon sensing changes in the microenvironment, macrophages become activated, undergoing a morphological and functional switch. Activation of these cells is not an “all-or-none” process, but rather a continuum characterized by a wide spectrum of molecular and functional phenotypes ranging from the “classical” M1 activated phenotype, with a highly pro-inflammatory profile, to the “alternative” M2 phenotype, associated with a beneficial, less inflammatory, protective profile. The possibility to promote a macrophage protective phenotype has therefore become a therapeutic goal in the treatment of inflammatory conditions, and the identification of factors that control cell activation is currently an area of active research. Most studies in the field so far have been performed using primary mouse macrophages or macrophage cell lines, and a variety of monocyte differentiation protocols and macrophage activation markers are used by different labs. Moreover, the pharmacological control of human macrophage polarized activation has not been extensively explored. A number of natural and synthetic compounds, including chalcones and curcumin, the major active component isolated from the turmeric plant Curcuma longa, have been shown to induce effects on macrophage function (including antioxidant, anti-microbial, anti-carcinogenic and anti-inflammatory action) through multiple pharmacological mechanisms, including interference with TLR4 signaling. On these grounds, the specific aims of the present thesis were: a) to test cell models and differentiation protocols other than spontaneous blood-derived macrophage differentiation, namely the THP-1 cell line and CSF-1-driven differentiation, respectively; b) to profile the cytokine pattern into the culture medium, and c) to determine the modulation of phenotypic markers by pharmacological agents, namely curcumin derivatives known to suppress microglial activation through reduced production and release of pro-inflammatory mediators, as well as the underlying mechanisms of action. Macrophages were differentiated from human PBMCs isolated by density gradient centrifugation, and cultured in RPMI 1640 medium with 10% FBS with CSF-1 for 6 days to obtain resting macrophages (M0). Classical (M1) and alternative (M2) phenotypes were generated using specific cytokines (0.1-1 μg/ml LPS or 20 ng/ml IL-4 plus 5 ng/ml IL-13, respectively) in the presence or absence of curcumin analogues or dexamethasone used a reference compound. Macrophage phenotypes were determined by flow cytometry using fluorocrome-labeled antibodies. Gene expression was analysed using qRT-PCR. The composition of macrophage conditioned media (MCM) was assessed with the Luminex technology. Curcumin analogues were kindly provided by Dr. Federica Belluti (University of Bologna). When M2 polarization was induced with IL-4/IL-13 for 24h, we observed increased expression of M2 markers compared with M0. In terms of gene expression analysis of the CSF-1 driven macrophages, as expected, M1-polarized macrophages after 6 or 48 h showed higher mRNA levels of TNF-α and IL-1β compared with M0. The increase in mRNA was more marked after 48 h for all genes except TNF-α, which rose more sharply after 6 h. The anti-inflammatory cytokine IL-10 mRNA was unexpectedly more abundant in M1- than in M2-polarized macrophages, and peaked after 6 h. Compared with M0, M2 MCM showed higher levels of anti-inflammatory cytokines including CCL22 and IL-4. In contrast, M1 MCM was associated with higher levels of IL-1α, IL-1β, IL-6, IL-8, MCP-1, VEGF and TNF-α. Treatment with the curcumin analogue GG9 as well as CLI095, an inhibitor of TLR4 intracellular domain, reversed the LPS-induced up-regulation of CD80+ (M1) cells. A similar effect was maintained with the double positive CD80+/CCR2+ population. Unlike dexamethasone, which increased the percentage of CD163+ (M2) cells, the curcumin analogue GG9 did not affect M2 markers. Treatment with GG9 significantly blocked IL-1β cytokine production at the cell-bound level, in the protein lysate and in the medium. By contrast, curcumin and GG6 did not affect the levels of intra- and extracellular IL-1β. To investigate intracellular signaling pathways involved in cell activation, we performed Western blot analysis of factors involved in the NF-κB pathway. Activation with LPS significantly decreased the relative expression of IκB-α. By contrast, curcumin and GG6 were able to restore IκB-α amounts as did CLI095, whereas no effect was induced by GG9 treatment. Therefore, M1 and M2 macrophages showed specific profiles of gene expression and surface markers, which were modulated by pharmacological treatment with dexamethasone or a curcumin analogue. Overall, these data suggest that polarized activation protocols may have an impact on the functional status of macrophages and are critical to further investigate pharmacological macrophage targeting

    The Glycolytic Enzyme PFKFB3 Is Involved in Estrogen-Mediated Angiogenesis via GPER1 s

    Get PDF
    ABSTRACT The endogenous estrogen 17b-estradiol (E2) is a key factor in promoting endothelial healing and angiogenesis. Recently, proangiogenic signals including vascular endothelial growth factor and others have been shown to converge in endothelial cell metabolism. Because inhibition of the glycolytic enzyme activator phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) reduces pathologic angiogenesis and estrogen receptor (ER) signaling stimulates glucose uptake and glycolysis by inducing PFKFB3 in breast cancer, we hypothesized that E2 triggers angiogenesis in endothelial cells via rapid ER signaling that requires PFKFB3 as a downstream effector. We report that treatment with the selective G protein-coupled estrogen receptor (GPER1) agonist G-1 (10 210 to 10 27 M) mimicked the chemotactic and proangiogenic effect of E2 as measured in a number of short-term angiogenesis assays in human umbilical vein endothelial cells (HUVECs); in addition, E2 treatment upregulated PFKFB3 expression in a time-and concentrationdependent manner. Such an effect peaked at 3 hours and was also induced by G-1 and abolished by pretreatment with the GPER1 antagonist G-15 or GPER1 siRNA, consistent with engagement of membrane ER. Experiments with the PFKFB3 inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one showed that PFKFB3 activity was required for estrogen-mediated HUVEC migration via GPER1. In conclusion, E2-induced angiogenesis was mediated at least in part by the membrane GPER1 and required upregulation of the glycolytic activator PFKFB3 in HUVECs. These findings unravel a previously unrecognized mechanism of estrogen-dependent endocrine-metabolic crosstalk in HUVECs and may have implications in angiogenesis occurring in ischemic or hypoxic tissues

    The small heat shock protein B8 (HSPB8) efficiently removes aggregating species of dipeptides produced in C9ORF72-related neurodegenerative diseases

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two neurodegenerative diseases in which similar pathogenic mechanisms are involved. Both diseases associate to the high propensity of specific misfolded proteins, like TDP-43 or FUS, to mislocalize and aggregate. This is partly due to their intrinsic biophysical properties and partly as a consequence of failure of the neuronal protein quality control (PQC) system. Several familial ALS/FTD cases are linked to an expansion of a repeated G4C2 hexanucleotide sequence present in the C9ORF72 gene. The G4C2, which localizes in an untranslated region of the C9ORF72 transcript, drives an unconventional repeat-associated ATG-independent translation. This leads to the synthesis of five different dipeptide repeat proteins (DPRs), which are not âclassicalâ misfolded proteins, but generate aberrant aggregation-prone unfolded conformations poorly removed by the PQC system. The DPRs accumulate into p62/SQSTM1 and ubiquitin positive inclusions. Here, we analyzed the biochemical behavior of the five DPRs in immortalized motoneurons. Our data suggest that while the DPRs are mainly processed via autophagy, this system is unable to fully clear their aggregated forms, and thus they tend to accumulate in basal conditions. Overexpression of the small heat shock protein B8 (HSPB8), which facilitates the autophagy-mediated disposal of a large variety of classical misfolded aggregation-prone proteins, significantly decreased the accumulation of most DPR insoluble species. Thus, the induction of HSPB8 might represent a valid approach to decrease DPR-mediated toxicity and maintain motoneuron viability

    The Regulation of the Small Heat Shock Protein B8 in Misfolding Protein Diseases Causing Motoneuronal and Muscle Cell Death

    Get PDF
    Misfolding protein diseases are a wide class of disorders in which the aberrantly folded protein aggregates accumulate in affected cells. In the brain and in the skeletal muscle, misfolded protein accumulation induces a variety of cell dysfunctions that frequently lead to cell death. In motoneuron diseases (MNDs), misfolded proteins accumulate primarily in motoneurons, glial cells and/or skeletal muscle cells, altering motor function. The deleterious effects of misfolded proteins can be counteracted by the activity of the protein quality control (PQC) system, composed of chaperone proteins and degradative systems. Here, we focus on a PQC system component: heat shock protein family B (small) member 8 (HSPB8), a chaperone induced by harmful stressful events, including proteotoxicity. In motoneuron and muscle cells, misfolded proteins activate HSPB8 transcription and enhance HSPB8 levels, which contributes to prevent aggregate formation and their harmful effects. HSPB8 acts not only as a chaperone, but also facilitates the autophagy process, to enable the efficient clearance of the misfolded proteins. HSPB8 acts as a dimer bound to the HSP70 co-chaperone BAG3, a scaffold protein that is also capable of binding to HSP70 (associated with the E3-ligase CHIP) and dynein. When this complex is formed, it is transported by dynein to the microtubule organization center (MTOC), where aggresomes are formed. Here, misfolded proteins are engulfed into nascent autophagosomes to be degraded via the chaperone-assisted selective autophagy (CASA). When CASA is insufficient or impaired, HSP70 and CHIP associate with an alternative co-chaperone, BAG1, which routes misfolded proteins to the proteasome for degradation. The finely tuned equilibrium between proteasome and CASA activity is thought to be crucial for maintaining the functional cell homeostasis during proteotoxic stresses, which in turn is essential for cell survival. This fine equilibrium seems to be altered in MNDs, like Amyotrophic lateral sclerosis (ALS) and spinal and bulbar muscular atrophy (SBMA), contributing to the onset and the progression of disease. Here, we will review how misfolded proteins may affect the PQC system and how the proper activity of this system can be restored by boosting or regulating HSPB8 activity, with the aim to ameliorate disease progression in these two fatal MNDs

    Tdp-25 Routing to Autophagy and Proteasome Ameliorates its Aggregation in Amyotrophic Lateral Sclerosis Target Cells

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that primarily affects motoneurons, while non-neuronal cells may contribute to disease onset and progression. Most ALS cases are characterized by the mislocalization and aggregation of the TAR DNA binding protein 43 (TDP-43) in affected cells. TDP-43 aggregates contain C-terminal TDP-43 fragments of 35 kDa (TDP-35) and 25 kDa (TDP-25) and have been mainly studied in motoneurons, while little is currently known about their rate of accumulation and clearance in myoblasts. Here, we performed a comparative study in immortalized motoneuronal like (NSC34; i-motoneurons) cells and stabilized myoblasts (C2C12; s-myoblasts) to evaluate if these two cell types differentially accumulate and clear TDP forms. The most aggregating specie in i-motoneurons is the TDP-25 fragment, mainly constituted by the \u201cprion-like\u201d domain of TDP-43. To a lower extent, TDP-25 also aggregates in s-myoblasts. In both cell types, all TDP species are cleared by proteasome, but TDP-25 impairs autophagy. Interestingly, the routing of TDP-25 fragment to proteasome, by overexpressing BAG1, or to autophagy, by overexpressing HSPB8 or BAG3 decreased its accumulation in both cell types. These results demonstrate that promoting the chaperone-assisted clearance of ALS-linked proteins is beneficial not only in motoneurons but also in myoblasts

    The role of the heat shock protein B8 (HSPB8) in motoneuron diseases

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and spinal and bulbar muscular atrophy (SBMA) are two motoneuron diseases (MNDs) characterized by aberrant protein behavior in affected cells. In familial ALS (fALS) and in SBMA specific gene mutations lead to the production of neurotoxic proteins or peptides prone to misfold, which then accumulate in form of aggregates. Notably, some of these proteins accumulate into aggregates also in sporadic ALS (sALS) even if not mutated. To prevent proteotoxic stresses detrimental to cells, misfolded and/or aggregated proteins must be rapidly removed by the protein quality control (PQC) system. The small heat shock protein B8 (HSPB8) is a chaperone induced by harmful events, like proteasome inhibition. HSPB8 is expressed both in motoneuron and muscle cells, which are both targets of misfolded protein toxicity in MNDs. In ALS mice models, in presence of the mutant proteins, HSPB8 is upregulated both in spinal cord and muscle. HSPB8 interacts with the HSP70 co-chaperone BAG3 and enhances the degradation of misfolded proteins linked to sALS, or causative of fALS and of SBMA. HSPB8 acts by facilitating autophagy, thereby preventing misfolded protein accumulation in affected cells. BAG3 and BAG1 compete for HSP70-bound clients and target them for disposal to the autophagy or proteasome, respectively. Enhancing the selective targeting of misfolded proteins by HSPB8-BAG3-HSP70 to autophagy may also decrease their delivery to the proteasome by the BAG1-HSP70 complex, thereby limiting possible proteasome overwhelming. Thus, approaches aimed at potentiating HSPB8-BAG3 may contribute to the maintenance of proteostasis and may delay MNDs progression

    Bisdemethoxycurcumin and Its Cyclized Pyrazole Analogue Differentially Disrupt Lipopolysaccharide Signalling in Human Monocyte-Derived Macrophages

    Get PDF
    Several studies suggest that curcumin and related compounds possess antioxidant and anti-inflammatory properties including modulation of lipopolysaccharide- (LPS-) mediated signalling in macrophage cell models. We here investigated the effects of curcumin and the two structurally unrelated analogues GG6 and GG9 in primary human blood-derived macrophages as well as the signalling pathways involved. Macrophages differentiated from peripheral blood monocytes for 7 days were activated with LPS or selective Toll-like receptor agonists for 24 h. The effects of test compounds on cytokine production and immunophenotypes evaluated as CD80+/CCR2+ and CD206+/CD163+ subsets were examined by ELISA and flow cytometry. Signalling pathways were probed by Western blot. Curcumin (2.5–10 μM) failed to suppress LPS-induced inflammatory responses. While GG6 reduced LPS-induced IκB-α degradation and showed a trend towards reduced interleukin-1β release, GG9 prevented the increase in proinflammatory CD80+ macrophage subset, downregulation of the anti-inflammatory CD206+/CD163+ subset, increase in p38 phosphorylation, and increase in cell-bound and secreted interleukin-1β stimulated by LPS, at least in part through signalling pathways not involving Toll-like receptor 4 and nuclear factor-κB. Thus, the curcumin analogue GG9 attenuated the LPS-induced inflammatory response in human blood-derived macrophages and may therefore represent an attractive chemical template for macrophage pharmacological targeting

    How the First Year of the COVID-19 Pandemic Impacted Patients’ Hospital Admission and Care in the Vascular Surgery Divisions of the Southern Regions of the Italian Peninsula

    Get PDF
    Background: To investigate the effects of the COVID-19 lockdowns on the vasculopathic population. Methods: The Divisions of Vascular Surgery of the southern Italian peninsula joined this multicenter retrospective study. Each received a 13-point questionnaire investigating the hospitalization rate of vascular patients in the first 11 months of the COVID-19 pandemic and in the preceding 11 months. Results: 27 out of 29 Centers were enrolled. April-December 2020 (7092 patients) vs. 2019 (9161 patients): post-EVAR surveillance, hospitalization for Rutherford category 3 peripheral arterial disease, and asymptomatic carotid stenosis revascularization significantly decreased (1484 (16.2%) vs. 1014 (14.3%), p = 0.0009; 1401 (15.29%) vs. 959 (13.52%), p = 0.0006; and 1558 (17.01%) vs. 934 (13.17%), p < 0.0001, respectively), while admissions for revascularization or major amputations for chronic limb-threatening ischemia and urgent revascularization for symptomatic carotid stenosis significantly increased (1204 (16.98%) vs. 1245 (13.59%), p < 0.0001; 355 (5.01%) vs. 358 (3.91%), p = 0.0007; and 153 (2.16%) vs. 140 (1.53%), p = 0.0009, respectively). Conclusions: The suspension of elective procedures during the COVID-19 pandemic caused a significant reduction in post-EVAR surveillance, and in the hospitalization of asymptomatic carotid stenosis revascularization and Rutherford 3 peripheral arterial disease. Consequentially, we observed a significant increase in admissions for urgent revascularization for symptomatic carotid stenosis, as well as for revascularization or major amputations for chronic limb-threatening ischemia
    • …
    corecore