76 research outputs found

    Ultrasonic Noninvasive Temperature Estimation Using Echoshift Gradient Maps: Simulation Results

    Full text link
    Percutaneous ultrasound-image-guided radiofrequency (rf) ablation is an effective treatment for patients with hepatic malignancies that are excluded from surgical resection due to other complications. However, ablated regions are not clearly differentiated from normal untreated regions using conventional ultrasound imaging due to similar echogenic tissue properties. In this paper, we investigate the statistics that govern the relationship between temperature elevation and the corresponding temperature map obtained from the gradient of the echoshifts obtained using consecutive ultrasound radiofrequency signals. A relationship derived using experimental data on the sound speed and tissue expansion variations measured on canine liver tissue samples at different elevated temperatures is utilized to generate ultrasound radiofrequency simulated data. The simulated data set is then utilized to statistically estimate the accuracy and precision of the temperature distributions obtained. The results show that temperature increases between 37 and 67°C can be estimated with standard deviations of ± 3 °C. Our results also indicate that the correlation coefficient between consecutive radiofrequency signals should be greater than 0.85 to obtain accurate temperature estimates. </jats:p

    Noninvasive vascular displacement estimation for relative elastic modulus reconstruction in transversal imaging planes.

    Get PDF
    Contains fulltext : 118877.pdf (publisher's version ) (Open Access)Atherosclerotic plaque rupture can initiate stroke or myocardial infarction. Lipid-rich plaques with thin fibrous caps have a higher risk to rupture than fibrotic plaques. Elastic moduli differ for lipid-rich and fibrous tissue and can be reconstructed using tissue displacements estimated from intravascular ultrasound radiofrequency (RF) data acquisitions. This study investigated if modulus reconstruction is possible for noninvasive RF acquisitions of vessels in transverse imaging planes using an iterative 2D cross-correlation based displacement estimation algorithm. Furthermore, since it is known that displacements can be improved by compounding of displacements estimated at various beam steering angles, we compared the performance of the modulus reconstruction with and without compounding. For the comparison, simulated and experimental RF data were generated of various vessel-mimicking phantoms. Reconstruction errors were less than 10%, which seems adequate for distinguishing lipid-rich from fibrous tissue. Compounding outperformed single-angle reconstruction: the interquartile range of the reconstructed moduli for the various homogeneous phantom layers was approximately two times smaller. Additionally, the estimated lateral displacements were a factor of 2-3 better matched to the displacements corresponding to the reconstructed modulus distribution. Thus, noninvasive elastic modulus reconstruction is possible for transverse vessel cross sections using this cross-correlation method and is more accurate with compounding

    Temperature Dependence of Ultrasonic Propagation Speed and Attenuation in Canine Tissue

    Full text link
    Previously reported data on the temperature dependence of propagation speed in tissues generally span only temperature ranges up to 60°C. However, with the emerging use of thermal ablative therapies, information on variation in this parameter over higher temperature ranges is needed. Measurements of the ultrasonic propagation speed and attenuation in tissue in vitro at discrete temperatures ranging from 25 to 95°C was performed for canine liver, muscle, kidney and prostate using 3 and 5 MHz center frequencies. The objective was to produce information for calibrating temperature-monitoring algorithms during ablative therapy. Resulting curves of the propagation speed vs. temperature for these tissues can be divided into three regions. In the 25–40°C range, the speed of sound increases rapidly with temperature. It increases moderately with temperature in the 40–70°C range, and it then decreases with increasing temperature from 70–95°C. Attenuation coefficient behavior with temperature is different for the various tissues. For liver, the attenuation coefficient is nearly constant with temperature. For kidney, attenuation increases approximately linearly with temperature, while for muscle and prostate tissue, curves of attenuation vs. temperature are flat in the 25–50°C range, slowly rise at medium temperatures (50–70°C), and level off at higher temperatures (70–90°C). Measurements were also conducted on a distilled degassed water sample and the results closely follow values from the literature. </jats:p

    Spatial angular compounding for ultrasound elastography

    No full text
    corecore