3,207 research outputs found

    Science with the Constellation-X Observatory

    Get PDF
    The Constellation X-ray Mission is a high throughput X-ray facility emphasizing observations at high spectral resolution (E/\Delta E \sim 300-3000), and broad energy bandpass (0.25-40 keV). Constellation-X will provide a factor of nearly 100 increase in sensitivity over current high resolution X-ray spectroscopy missions. It is the X-ray astronomy equivalent of large ground-based optical telescopes such as the Keck Observatory and the ESO Very Large Telescope. When observations commence toward the end of next decade, Constellation-X will address many fundamental astrophysics questions such as: the formation and evolution of clusters of galaxies; constraining the baryon content of the Universe; determining the spin and mass of supermassive black holes in AGN; and probing strong gravity in the vicinity of black holes.Comment: to appear in "After the Dark Ages: When Galaxies Were Young", eds. S.S. Holt and E.P. Smith, 4 pages, 1 figur

    GAUSS - A Sample Return Mission to Ceres

    Get PDF
    Ceres, the largest resident in the main asteroid belt and the innermost dwarf planet of the solar system, shares characteristics with a broad diversity of solar system objects, making it one of the most intriguing targets for planetary exploration. The recently completed Dawn mission through its 3.5 years of in-orbit investigation has furthered our understanding of Ceres, yet at the same time opened up more questions. Remote sensing data revealed that Ceres is rich in volatiles and organics, with fresh traces of cryovolcanic and geothermal activities. There is potential evidence of Ceres’ past and present habitability. Findings by Dawn suggest that Ceres might once be an ocean world and have undergone more complicated evolution than originally expected. Thus, Ceres encapsulates key information for understanding the history of our solar system and the origin of life, which has yet to be explored by future missions. We present the GAUSS project (Genesis of Asteroids and EvolUtion of the Solar System), recently proposed as a white paper to ESA’s Voyage 2050 program. GAUSS is a mission concept of future exploration of Ceres with sample return as the primary goal. It aims to address the following top-level scientific questions concerning: 1) the origin and migration of Ceres and its implications on the water and volatile distribution and transfer in the inner solar system; 2) the internal structure and evolution of Ceres; 3) Ceres’ past and present-day habitability; and 4) mineralogical connections between Ceres and collections of primitive meteorites. We will discuss scientific objectives of Ceres exploration in post-Dawn era as well as instrumentation required for achieving them. We will explore candidate landing and sampling sites of high scientific interest based on Dawn results. We will also consider technical and financial feasibility of different mission scenarios in the context of broad international collaboration

    Simulation System for the Wendelstein 7-X Safety Control System

    Full text link
    The Wendelstein 7-X (W7-X) Safety Instrumented System (SIS) ensures personal safety and investment protection. The development and implementation of the SIS are based on the international safety standard for the process industry sector, IEC 61511. The SIS exhibits a distributed and hierarchical organized architecture consisting of a central Safety System (cSS) on the top and many local Safety Systems (lSS) at the bottom. Each technical component or diagnostic system potentially hazardous for the staff or for the device is equipped with an lSS. The cSS is part of the central control system of W7-X. Whereas the lSSs are responsible for the safety of each individual component, the cSS ensures safety of the whole W7-X device. For every operation phase of the W7-X experiment hard- and software updates for the SIS are mandatory. New components with additional lSS functionality and additional safety signals have to be integrated. Already established safety functions must be adapted and new safety functions have to be integrated into the cSS. Finally, the safety programs of the central and local safety systems have to be verified for every development stage and validated against the safety requirement specification. This contribution focuses on the application of a model based simulation system for the whole SIS of W7-X. A brief introduction into the development process of the SIS and its technical realization will be give followed by a description of the design and implementation of the SIS simulation system using the framework SIMIT (Siemens). Finally, first application experiences of this simulation system for the preparation of the SIS for the upcoming operation phase OP 1.2b of W7-X will be discussed

    From network to phenotype : the dynamic wiring of an Arabidopsis transcriptional network induced by osmotic stress

    Get PDF
    Plants have established different mechanisms to cope with environmental fluctuations and accordingly fine-tune their growth and development through the regulation of complex molecular networks. It is largely unknown how the network architectures change and what the key regulators in stress responses and plant growth are. Here, we investigated a complex, highly interconnected network of 20 Arabidopsis transcription factors (TFs) at the basis of leaf growth inhibition upon mild osmotic stress. We tracked the dynamic behavior of the stress-responsive TFs over time, showing the rapid induction following stress treatment, specifically in growing leaves. The connections between the TFs were uncovered using inducible overexpression lines and were validated with transient expression assays. This study resulted in the identification of a core network, composed of ERF6, ERF8, ERF9, ERF59, and ERF98, which is responsible for most transcriptional connections. The analyses highlight the biological function of this core network in environmental adaptation and its redundancy. Finally, a phenotypic analysis of loss-of-function and gain-of-function lines of the transcription factors established multiple connections between the stress-responsive network and leaf growth

    Upper limits on neutrino masses from the 2dFGRS and WMAP: the role of priors

    Full text link
    Solar, atmospheric, and reactor neutrino experiments have confirmed neutrino oscillations, implying that neutrinos have non-zero mass, but without pinning down their absolute masses. While it is established that the effect of neutrinos on the evolution of cosmic structure is small, the upper limits derived from large-scale structure data could help significantly to constrain the absolute scale of the neutrino masses. In a recent paper the 2dF Galaxy Redshift Survey (2dFGRS) team provided an upper limit m_nu,tot < 2.2 eV, i.e. approximately 0.7 eV for each of the three neutrino flavours, or phrased in terms of their contributioin to the matter density, Omega_nu/Omega_m < 0.16. Here we discuss this analysis in greater detail, considering issues of assumed 'priors' like the matter density Omega_m and the bias of the galaxy distribution with respect the dark matter distribution. As the suppression of the power spectrum depends on the ratio Omega_nu/Omega_m, we find that the out-of- fashion Mixed Dark Matter Model, with Omega_nu=0.2, Omega_m=1 and no cosmological constant, fits the 2dFGRS power spectrum and the CMB data reasonably well, but only for a Hubble constant H_0<50 km/s/Mpc. As a consequence, excluding low values of the Hubble constant, e.g. with the HST Key Project is important in order to get a strong constraint on the neutrino masses. We also comment on the improved limit by the WMAP team, and point out that the main neutrino signature comes from the 2dFGRS and the Lyman alpha forest.Comment: 24 pages, 12 figures Minor changes to matched version published in JCA

    A Static Analyzer for Large Safety-Critical Software

    Get PDF
    We show that abstract interpretation-based static program analysis can be made efficient and precise enough to formally verify a class of properties for a family of large programs with few or no false alarms. This is achieved by refinement of a general purpose static analyzer and later adaptation to particular programs of the family by the end-user through parametrization. This is applied to the proof of soundness of data manipulation operations at the machine level for periodic synchronous safety critical embedded software. The main novelties are the design principle of static analyzers by refinement and adaptation through parametrization, the symbolic manipulation of expressions to improve the precision of abstract transfer functions, the octagon, ellipsoid, and decision tree abstract domains, all with sound handling of rounding errors in floating point computations, widening strategies (with thresholds, delayed) and the automatic determination of the parameters (parametrized packing)

    Scalar-Torsion Mode in a Cosmological Model of the Poincar\'{e} Gauge Theory of Gravity

    Full text link
    We investigate the equation of state (EoS) of the scalar-torsion mode in Poincar\'{e} gauge theory of gravity. We concentrate on two cases with the constant curvature solution and positive kinetic energy, respectively. In the former, we find that the torsion EoS has different values in the various stages of the universe. In particular, it behaves like the radiation (matter) EoS of wr=1/3w_r=1/3 (wm=0w_m=0) in the radiation (matter) dominant epoch, while in the late time the torsion density is supportive for the accelerating universe. In the latter, our numerical analysis shows that in general the EoS has an asymptotic behavior in the high redshift regime, while it could cross the phantom divide line in the low redshift regime.Comment: 12 pages, 2 figures, title changed, revised version accepted for publication in JCA

    Cosmological Evolution of a Tachyon-Quintom Model of Dark Energy

    Full text link
    In this work we study the cosmological evolution of a dark energy model with two scalar fields, i.e. the tachyon and the phantom tachyon. This model enables the equation of state ww to change from w>−1w>-1 to w<−1w<-1 in the evolution of the universe. The phase-space analysis for such a system with inverse square potentials shows that there exists a unique stable critical point, which has power-law solutions. In this paper, we also study another form of tachyon-quintom model with two fields, which voluntarily involves the interactions between both fields.Comment: 17 pages, 10 figure
    • 

    corecore