23 research outputs found

    Absence of intraocular infections after hematopoietic stem cell transplantation at a single center: The experience with current preventive regimens

    Get PDF
    Purpose: To investigate the prevalence of intraocular infections after allogeneic stem cell transplantation (allo-SCT). Methods: The study design was a single institutional retrospective noncomparative cohort of 135 consecutive patients in 2006 and 2007 who underwent allo-SCT for hematological malignancy. The primary outcome wa

    Frequent mutated B2M, EZH2, IRF8, and TNFRSF14 in primary bone diffuse large B-cell lymphoma reflect a GCB phenotype

    Get PDF
    Primary bone diffuse large B-cell lymphoma (PB-DLBCL) is a rare extranodal lymphoma subtype. This retrospective study elucidates the currently unknown genetic background of a large clinically well-annotated cohort of DLBCL with osseous localizations (O-DLBCL), including PB-DLBCL. A total of 103 patients with O-DLBCL were included and compared with 63 (extra)nodal non-osseous (NO)-DLBCLs with germinal center B-cell phenotype (NO-DLBCL-GCB). Cell-of-origin was determined by immunohistochemistry and gene-expression profiling (GEP) using (extended)-NanoString/Lymph2Cx analysis. Mutational profiles were identified with targeted next-generation deep sequencing, including 52 B-cell lymphoma-relevant genes. O-DLBCLs, including 34 PB-DLBCLs, were predominantly classified as GCB phenotype based on immunohistochemistry (74%) and NanoString analysis (88%). Unsupervised hierarchical clustering of an extended-NanoString/Lymph2Cx revealed significantly different GEP clusters for PB-DLBCL as opposed to NO-DLBCL-GCB (P < .001). Expression levels of 23 genes of 2 different targeted GEP panels indicated a centrocyte-like phenotype for PB-DLBCL, whereas NO-DLBCL-GCB exhibited a centroblast-like constitution. PB-DLBCL had significantly more frequent mutations in four GCB-associated genes (ie, B2M, EZH2, IRF8, TNFRSF14) compared with NO-DLBCL-GCB (P = .031, P = .010, P = .047, and P = .003, respectively). PB-DLBCL, with its corresponding specific mutational profile, was significantly associated with a superior survival compared with equivalent Ann Arbor limited-stage I/II NO-DLBCL-GCB (P = .016). This study is the first to show that PB-DLBCL is characterized by a GCB phenotype, with a centrocyte-like GEP pattern and a GCB-associated mutational profile (both involved in immune surveillance) and a favorable prognosis. These novel biology-associated features provide evidence that PB-DLBCL represents a distinct extranodal DLBCL entity, and its specific mutational landscape offers potential for targeted therapies (eg, EZH2 inhibitors)

    Sufficient Immunosuppression with Thymoglobulin Is Essential for a Successful Haplo-Myeloid Bridge in Haploidentical-Cord Blood Transplantation

    Get PDF
    In haploidentical (haplo)-cord blood (CB) transplantations, early haplo donor engraftment serves as a myeloid bridge to sustainable CB engraftment and is associated with early neutrophil recovery. The conditioning regimens as published for haplo-cord protocols usually contain serotherapy, such as rabbit antithymocyte globulin (ATG) (Thymoglobulin, Genzyme, Cambridge, MA). However, reducing or omitting serotherapy is an important strategy to improve early immune reconstitution after transplantation. The need for serotherapy in successful haplo-cord transplantation, defined as having a haplo-derived myeloid bridge to CB engraftment, has not been investigated before. Two consecutive cohorts of patients underwent transplantation with haplo-CB. The first group underwent transplantation with haplo-CB for active infection and/or an underlying condition with expected difficult engraftment without a conventional donor available. They received a single unit (s) CB and haplo donor cells (CD34(+) selected, 5 x 10(6) CD34(+)/kg). The second cohort included patients with poor-risk malignancies, not eligible for other treatment protocols. They received a sCB and haplo donor cells (CD19/alpha beta TCR-depleted; 5 x 10(6) CD34(+)/kg). Retrospectively in both cohorts, active ATG (Thymoglobulin) levels were measured and post hematopoietic cell transplantation area under the curve (AUC) was calculated. The influence of ATG exposure for having a successful haplo-myeloid bridge (early haplo donor engraftment before CB engraftment and no secondary neutropenia) and transplantation-related mortality (TRM) were analyzed as primary endpoints. Twenty patients were included (16 in the first cohort and 4 in the second cohort). In 58% of evaluable patients, there was no successful haplo-derived myeloid bridge to CB engraftment, for which a low post-transplantation ATG exposure appeared to be a predictor (P <.001). TRM in the unsuccessful haplo-bridge group was 70% +/- 16% versus 12% +/- 12% in the successful haplo-bridge group (P = .012). In conclusion, sufficient in vivo T depletion with ATG is required for a successful haplo-myeloid bridge to CB engraftment. (C) 2015 American Society for Blood and Marrow Transplantation

    Evaluation of Dutch guideline for just-in-time addition of plerixafor to stem cell mobilization in patients who fail with granulocyte-colony-stimulating factor

    No full text
    Background: Plerixafor in combination with granulocyte-colony-stimulating factor (G-CSF) is approved for the use of stem cell collection in patients who fail to mobilize on G-CSF. In 2009 the Stem Cell Working Party of the Dutch-Belgian Cooperative Trial group for Hematology Oncology (HOVON) composed a guideline for the use of plerixafor. According to this guideline it is recommended to add plerixafor to G-CSF in patients with circulating CD34+ cell counts of fewer than 20 × 106/L on 2 consecutive days accompanied by increasing white blood cells.  Study Design and Methods: In this analysis we evaluated retrospectively the outcome of the use of this guideline in the Netherlands. In total 111 patients received plerixafor with a median one administration (range, one to four administrations). Of these patients 55.8% had non-Hodgkin lymphoma, 31.5% multiple myeloma, 8.1% Hodgkin lymphoma, and 4.5% nonhematologic malignancies.  Results: In 63.9% patients sufficient numbers of CD34+ cells were collected. In patients with multiple myeloma more successful mobilizations with plerixafor were observed compared to patients with non-Hodgkin lymphoma (71.4% vs. 61.3%). In patients with circulating CD34+ cell counts of at least 2.0 × 106/L before administration of plerixafor a successful mobilization was achieved in 76.5%, and in the patients with very low (0-1 × 106/L) circulating CD34+ cell counts the success rate was 44.2%.  Conclusion: Application of the HOVON guideline on the just-in-time administration of plerixafor is effective for mobilization of hematopoietic stem cells in the majority of patients. Stem cell yield in patients with non-Hodgkin lymphoma was lower compared to patients with multiple myeloma. Also patients with very low circulating CD34+ cells before addition of plerixafor might benefit from this approach

    Evaluation of Dutch guideline for just-in-time addition of plerixafor to stem cell mobilization in patients who fail with granulocyte-colony-stimulating factor

    No full text
    Background: Plerixafor in combination with granulocyte-colony-stimulating factor (G-CSF) is approved for the use of stem cell collection in patients who fail to mobilize on G-CSF. In 2009 the Stem Cell Working Party of the Dutch-Belgian Cooperative Trial group for Hematology Oncology (HOVON) composed a guideline for the use of plerixafor. According to this guideline it is recommended to add plerixafor to G-CSF in patients with circulating CD34+ cell counts of fewer than 20 × 106/L on 2 consecutive days accompanied by increasing white blood cells.  Study Design and Methods: In this analysis we evaluated retrospectively the outcome of the use of this guideline in the Netherlands. In total 111 patients received plerixafor with a median one administration (range, one to four administrations). Of these patients 55.8% had non-Hodgkin lymphoma, 31.5% multiple myeloma, 8.1% Hodgkin lymphoma, and 4.5% nonhematologic malignancies.  Results: In 63.9% patients sufficient numbers of CD34+ cells were collected. In patients with multiple myeloma more successful mobilizations with plerixafor were observed compared to patients with non-Hodgkin lymphoma (71.4% vs. 61.3%). In patients with circulating CD34+ cell counts of at least 2.0 × 106/L before administration of plerixafor a successful mobilization was achieved in 76.5%, and in the patients with very low (0-1 × 106/L) circulating CD34+ cell counts the success rate was 44.2%.  Conclusion: Application of the HOVON guideline on the just-in-time administration of plerixafor is effective for mobilization of hematopoietic stem cells in the majority of patients. Stem cell yield in patients with non-Hodgkin lymphoma was lower compared to patients with multiple myeloma. Also patients with very low circulating CD34+ cells before addition of plerixafor might benefit from this approach
    corecore