5,081 research outputs found

    The role of mentorship in protege performance

    Full text link
    The role of mentorship on protege performance is a matter of importance to academic, business, and governmental organizations. While the benefits of mentorship for proteges, mentors and their organizations are apparent, the extent to which proteges mimic their mentors' career choices and acquire their mentorship skills is unclear. Here, we investigate one aspect of mentor emulation by studying mentorship fecundity---the number of proteges a mentor trains---with data from the Mathematics Genealogy Project, which tracks the mentorship record of thousands of mathematicians over several centuries. We demonstrate that fecundity among academic mathematicians is correlated with other measures of academic success. We also find that the average fecundity of mentors remains stable over 60 years of recorded mentorship. We further uncover three significant correlations in mentorship fecundity. First, mentors with small mentorship fecundity train proteges that go on to have a 37% larger than expected mentorship fecundity. Second, in the first third of their career, mentors with large fecundity train proteges that go on to have a 29% larger than expected fecundity. Finally, in the last third of their career, mentors with large fecundity train proteges that go on to have a 31% smaller than expected fecundity.Comment: 23 pages double-spaced, 4 figure

    Myosin-1C augments secretion of von Willebrand factor by linking contractile actomyosin machinery to the plasma membrane.

    Get PDF
    Blood endothelial cells control the hemostatic and inflammatory response by secreting von Willebrand factor (VWF) and P-selectin from storage organelles called Weibel-Palade bodies (WPB). Actin-associated motor proteins regulate this secretory pathway at multiple points. Prior to fusion, myosin Va forms a complex that anchors WPBs to peripheral actin structures allowing maturation of content. Post-fusion, an actomyosin ring/coat is recruited and compresses the WPB to forcibly expel the largest VWF multimers. Here we provide the first evidence for the involvement of class I myosins during regulated VWF secretion. We show that the unconventional myosin-1C (Myo1c) is recruited post-fusion via its pleckstrin homology domain in an actin-independent process. This provides a link between the actin ring and phosphatidylinositol 4,5-bisphosphate (PIP2) at the membrane of the fused organelle and is necessary to ensure maximal VWF secretion. This is an active process requiring Myo1c ATPase activity as inhibition of class I myosins using the inhibitor Pentachloropseudilin or expression of an ATPase deficient Myo1c rigor mutant perturbs the expulsion of VWF and alters the kinetics of the exocytic actin ring. These data offer a novel insight into the control of an essential physiological process and provide a new way in which it can be regulated

    Bacteremia in a human caused by an XDR strain of Pseudomonas fulva

    Get PDF
    This is the first report from Pakistan of a case of bacteremia in a human due to P. fulva, an opportunistic infection with increased risk of a drug resistant phenotype. P. fulva was isolated from blood of a 45 years male admitted in surgical ICU. Isolate was identified by the MALDI-TOF-MS and was extensively drug resistant (XDR) strain. Isolate was found negative for metallo β lactamase (MBL) and extended spectrum β lactamase (ESBL) types by phenotypic and polymerase chain reaction (PCR) assays. It was concluded that P. fulva is an emerging opportunistic pathogen

    Liposomal Co-Entrapment of CD40mAb Induces Enhanced IgG Responses against Bacterial Polysaccharide and Protein

    Get PDF
    Background Antibody against CD40 is effective in enhancing immune responses to vaccines when chemically conjugated to the vaccine antigen. Unfortunately the requirement for chemical conjugation presents some difficulties in vaccine production and quality control which are compounded when multivalent vaccines are required. We explore here an alternative to chemical conjugation, involving the co-encapsulation of CD40 antibody and antigens in liposomal vehicles. Methodology/Principal Findings Anti-mouse CD40 mAb or isotype control mAb were co-entrapped individually in cationic liposomal vehicles with pneumococcal polysaccharides or diphtheria and tetanus toxoids. Retention of CD40 binding activity upon liposomal entrapment was assessed by ELISA and flow cytometry. After subcutaneous immunization of BALB/c female mice, anti-polysaccharide and DT/TT responses were measured by ELISA. Simple co-encapsulation of CD40 antibody allowed for the retention of CD40 binding on the liposome surface, and also produced vaccines with enhanced imunogenicity. Antibody responses against both co-entrapped protein in the form of tetanus toxoid, and Streptococcus pneumoniae capsular polysaccharide, were enhanced by co-encapsulation with CD40 antibody. Surprisingly, liposomal encapsulation also appeared to decrease the toxicity of high doses of CD40 antibody as assessed by the degree of splenomegaly induced. Conclusions/Significance Liposomal co-encapsulation with CD40 antibody may represent a practical means of producing more immunogenic multivalent vaccines and inducing IgG responses against polysaccharides without the need for conjugation

    Left Ventricle Quantification Using Direct Regression with Segmentation Regularization and Ensembles of Pretrained 2D and 3D CNNs

    Full text link
    Cardiac left ventricle (LV) quantification provides a tool for diagnosing cardiac diseases. Automatic calculation of all relevant LV indices from cardiac MR images is an intricate task due to large variations among patients and deformation during the cardiac cycle. Typical methods are based on segmentation of the myocardium or direct regression from MR images. To consider cardiac motion and deformation, recurrent neural networks and spatio-temporal convolutional neural networks (CNNs) have been proposed. We study an approach combining state-of-the-art models and emphasizing transfer learning to account for the small dataset provided for the LVQuan19 challenge. We compare 2D spatial and 3D spatio-temporal CNNs for LV indices regression and cardiac phase classification. To incorporate segmentation information, we propose an architecture-independent segmentation-based regularization. To improve the robustness further, we employ a search scheme that identifies the optimal ensemble from a set of architecture variants. Evaluating on the LVQuan19 Challenge training dataset with 5-fold cross-validation, we achieve mean absolute errors of 111 +- 76mm^2, 1.84 +- 0.9mm and 1.22 +- 0.6mm for area, dimension and regional wall thickness regression, respectively. The error rate for cardiac phase classification is 6.7%.Comment: Accepted at the MICCAI Workshop STACOM 201

    Fibrosis in the kidney: is a problem shared a problem halved?

    Get PDF
    Fibrotic disorders are commonplace, take many forms and can be life-threatening. No better example of this exists than the progressive fibrosis that accompanies all chronic renal disease. Renal fibrosis is a direct consequence of the kidney's limited capacity to regenerate after injury. Renal scarring results in a progressive loss of renal function, ultimately leading to end-stage renal failure and a requirement for dialysis or kidney transplantation
    • …
    corecore