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Abstract 

 
Background. Mapping the hypoxic brain in acute ischemic stroke has considerable 

potential for both diagnosis and treatment monitoring. PET using 18F-fluoro-misonidazole 

(FMISO) is the reference method, however it lacks clinical accessibility and involves 

radiation exposure. MR-based T2’ mapping may identify tissue hypoxia and holds clinical 

potential. However, its validation against FMISO imaging is lacking. Here we implemented 

back-to-back FMISO-PET and T2’ MR in rodents subjected to acute middle cerebral artery 

occlusion (MCAo). For direct clinical relevance, regions-of-interest (ROIs) delineating 

reduced T2’ signal areas were manually drawn. 

Methods. Wistar rats were subjected to filament MCAo, immediately followed by 

intravenous FMISO injection. Multi-echo T2 and T2* sequences were acquired twice 

during FMISO brain uptake, interleaved with diffusion-weighted imaging. Perfusion- 

weighted MR was also acquired whenever feasible. Immediately following MR, PET data 

reflecting the history of FMISO brain uptake during MR acquisition were acquired. T2’ 

maps were generated voxel-wise from T2 and T2*. Two raters independently drew T2’ 

lesion ROIs. FMISO uptake and perfusion data were obtained within T2’ consensus ROIs, 

and their overlap with the automatically-generated FMISO lesion and ADC lesion ROIs 

was computed. 

Results. As predicted, consensus T2’ lesion ROIs exhibited high FMISO uptake as well as 

substantial overlap with the FMISO lesion and significant hypoperfusion, but only small 

overlap with the ADC lesion. Overlap of the T2’ lesion ROIs between the two raters was 

~50%. 
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Conclusions. This study provides formal validation of T2’ to map non-core hypoxic tissue 

in acute stroke. T2’ lesion delineation reproducibility was suboptimal, reflecting unclear 

lesion borders. 

 
 

Key Words: positron emission tomography; cerebral ischemia; MRI; brain imaging; 

stroke; FMISO 
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Introduction 

 
In acute ischemic stroke, imaging the hypoxic brain at risk of impending infarction is an 

important goal (1). PET-based methods to indirectly map brain hypoxia using oxygen-15 

labelled compounds are complex, expensive and scarcely-available (2). The direct PET 

hypoxia tracer 18F-fluoro-misonidazole (FMISO) accumulates over time in hypoxic but non 

necrotic brain areas thanks to irreversible covalent trapping of its reduced form to cell 

organelles (3), and has been extensively used in acute ischemic stroke studies, both pre-

clinical (4-8) and clinical(9-16). However, FMISO PET remains poorly accessible in the 

acute clinical setting, and in addition involves radiation exposure. More widely accessible, 

non-invasive approaches to map acute brain hypoxia are therefore highly desirable. Recent 

efforts have aimed to develop various MR-based approaches to directly map tissue hypoxia 

(17, 18), all based on the T2* susceptibility effect reflecting the local 

deoxyhemoglobin/oxyhemoglobin ratio. Among these, T2’ mapping is particularly 

promising as it provides direct information on local deoxyhemoglobin concentration, and 

hence should be sensitive to tissue hypoxia. 

 
 

Although previous work in stroke patients and rodent models found T2’ reductions in 

hypoperfused areas and within apparent diffusion coefficient (ADC) lesions, consistent 

with tissue hypoxia (19-24), no direct validation of T2’ imaging against PET has been 

reported so far. Furthermore, all the above experimental and clinical studies reported T2’ 

values within hypoperfused or ADC lesion regions-of-interest (ROIs), but did not directly 
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address the clinically relevant question whether reduced T2’ signal, assumed to represent 

tissue hypoxia, can be reliably delineated by visual inspection of T2’ maps. 

 
 

Aims and Hypothesis 

 
The present PET and MR back-to-back study therefore aimed to directly test the hypothesis 

that T2’ lesions truly reflect acute tissue hypoxia. To this end, we assessed in a rodent 

stroke model whether areas of reduced T2’ signal i) exhibit high FMISO uptake; and ii) 

topographically match to FMISO hypoxia lesions. The imaging protocol exploited the 

specific feature of intravenously administered FMISO to slowly accumulate in hypoxic 

tissue over 2.5hrs. Accordingly, MR data acquisition was carried out whilst FMISO 

accumulated in hypoxic tissue, and actual PET data acquisition was carried out once MR 

acquisition was complete. To test the above hypothesis, we determined if FMISO uptake 

is effectively higher within the visually-delineated T2’ lesion ROIs, and how well the latter 

overlaps FMISO lesions. Because the ischemic core is expected to exhibit only mild 

residual hypoxia, we also predicted that the T2’ lesion ROI would only marginally overlap 

with the apparent diffusion coefficient (ADC) lesion ROI. In addition, as an ancillary 

substudy, we aimed to confirm the presence of hypoperfusion within the T2’ lesion ROIs 

in our setting. Finally, to assess reliability, we determined the inter-rater reproducibility in 

T2’ lesion ROI delineation. 
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Material and Methods 

 

 

This study was approved by the University of Cambridge Ethical Review Panel, who 

required that the study be designed so as to keep the number of animals to a minimum, yet 

sufficient to obtain meaningful results, in accordance with the legislation of UK Animals 

Scientific Procedures Act 1986. Accordingly, five animals are considered sufficient to 

provide a proof-of-concept study addressing a single, well-defined hypothesis. The large 

human resources and costs involved in the present complex studies was another constraint. 

Animal experiments complied with the ARRIVE guidelines. As no early death or other 

complications occurred, all five experimental subjects are reported. 

 
 

Subjects 

 

Adult male Wistar rats (n=5, 385 ± 22g) were used. This strain was selected because it has 

slower stroke evolution than other strains (25), which was relevant for this study where MR 

and PET data were to be compared over 2.5hrs after middle cerebral artery occlusion 

(MCAo), see protocol below. 

 
 

Surgical procedures 

 

Under isoflurane anesthesia, spontaneously breathing rats underwent filament MCAo 

(Supplemental Methods). Clear ischemic lesions were consistently present on diffusion- 

weighted MR (DWI), FMISO PET and TTC staining (see Results). 
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Imaging protocol 

 

The imaging protocol is detailed in the Supplemental Methods. In brief, immediately 

following MCAo (median 3mins, range 1-7mins), the anesthetized animal was 

intravenously administered 18F-FMISO as a slow bolus, and transferred to the 4.7T MR 

scanner. Median time from FMISO injection to start of MR acquisition was 12mins 

(range 10-15mins). 

 
 

MRI 

 

The protocol timelines are depicted in Figure 1, and detailed in Supplemental Methods. 

Following a T2-weighted (T2w) scan for coregistration purposes, the following sequences 

were acquired twice directly back-to-back (to be referred to as ‘time point 1’ and ‘time 

point 2’): DWI, multiecho T2 and multiecho T2*. Overall scanning time for each block 

was 44min 26s. In three animals, dynamic susceptibility contrast (DSC) perfusion-

weighted MRI was acquired immediately after the second MR block. 

 
 

PET 

 

Once MR acquisition complete, the animal was transferred to a microPET. FMISO 

emission data were acquired from 120 to 150min post-injection, followed by transmission 

data. See Supplemental Methods for details. The attenuation-corrected FMISO image was 

converted to a standardised uptake value (SUV) image, using the injected activity and 

animal weight. 
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Tetrazolium chloride (TTC) 

 

Immediately after completion of PET scanning, TTC staining was carried as detailed in 

Supplemental Methods. ROIs delineating the lesion across all brain sections were 

independently drawn by two observers using ImageJ, and any disagreement subsequently 

resolved by consensus. 

 
 

MR image processing 

 

T2’ maps 

 

T2’ maps were generated as detailed in Supplemental Methods. This process yielded 

maps of absolute T2’ for each rat and each MR acquisition block. Image coregistration 

procedures are detailed in Supplemental Methods. 

 
 

ROI definition and data analysis 

 

For each time point, T2’ lesion ROIs, i.e., hypointense areas compared to contralateral 

corresponding regions, were independently delineated on the T2’ maps by two observers 

(Supplemental Methods). Consensus ROIs were used for further calculations and 

comparisons. 

 
 

ADC lesion ROIs were automatically generated using ADC<530*10-6mm2/s (26). Finally, 

FMISO lesion ROIs were automatically derived on the SUV images according to an 

automated statistical voxel-based method detailed elsewhere (8), applying p=0.01 as cut- 

off. 
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Dimensionless weighted mean Affected/Unaffected side-to-side ratios for the above 

variables were calculated following generation of Mirror ROIs on the contralesional 

hemisphere (Supplemental Methods). 

 
 

Perfusion data analysis 

 

MR-DSC data were analyzed using standard methodology (Supplemental Methods) to 

generate quantitative CBF, CBV, MTT and TTP maps. 

 
 

Statistical analysis 

 

 

Inter-observer agreement was assessed using the percent geometrical overlap between the 

T2’ ROIs from both observers, calculated for each time point as the area of intersection 

between, divided by the average of, the two ROIs, multiplied by 100; a weighted average 

% overlap was then computed across slices. The closer this index is to 100 % the more 

similar the two ROIs are. The overlap between the T2’ and ADC ROIs, and that between 

the T2’ and FMISO lesion ROIs, was expressed relative to the T2’ lesion ROI volume. The 

overlap between the TTC ROIs from the two observers was computed as with the T2’ 

lesion ROIs. Finally, CBF, CBV, MTT and TTP ratios within the time-point 2 T2’ lesion 

ROIs versus mirror ROIs were computed. 

 
 

Given the small sample not permitting Wilcoxon non-parametric tests, parametric tests 

were used throughout. Correction for multiple tests was not considered given the 

biologically straightforward hypotheses. Two-tailed p<0.05 was considered significant 
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save for the perfusion data where one-tailed p was used given the sample size and 

confirmatory aim only (n=3). 

 
 

Results 

 

 
 

Figure 2 illustrates typical imaging findings from this study. 

 

 
 

Inter-observer agreement 

 

The mean (±SD) % overlap in T2’ lesion ROIs between the two observers was 66 ± 29% 

and 43 ± 35% at time-points 1 and 2, respectively. Supplemental Figure 1 illustrates 

examples of original and consensus T2’ lesion ROIs. 

 
 

FMISO SUV in T2’ consensus ROIs 

 

The mean FMISO SUV value within the T2’ consensus ROI was almost twice higher than 

in mirror ROI (Table 1), which was statistically significant at time-point 2 and not quite at 

time-point 1 (no significant differences between time points). Also shown for the sake of 

completeness are the SUV values within the ADC ROI, which were higher than in the T2’ 

lesion ROI but not significantly so. 

 
 

Volume of the T2’ consensus, FMISO and ADC ROIs 

 

The volumes of the T2’ consensus and ADC ROIs for each rat and each time-point are 

shown in Table 2, together with the FMISO ROI volumes. 
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Overlap between the T2’ consensus ROI and the FMISO lesion ROI 

 

Excluding the rat with no T2’ ROI at time-point 1 (Table 2), the % overlap between the 

consensus T2’ lesion ROI and the FMISO lesion ROI ranged from 0 (for the two smallest 

T2’ ROIs) to 96%, with a mean (± 1SD) of 44 (± 39.6%) and 55.6 (± 36.2%) at time- points 

1 and 2, respectively. 

 
 

T2’ consensus ROI versus ADC ROI 

 

As predicted, the overlap between the T2’ consensus ROI and the ADC ROI was very small 

at both time points, even excluding the three zero volumes, and ranged from 0 for the 

smallest T2’ or ADC lesions to 23% for the largest ADC lesion, with means (± 1SD) of 

1.0% (± 1.7%) and 11.0% (± 9.2%), respectively (not significantly different from each 

other). 

 
 

Perfusion within the T2’ lesion ROIs 

 

As expected, the CBF and CBV ratios within the T2’ consensus lesion ROIs were 

significantly reduced, and the TTP and MTT ratios significantly elevated (Table 3). 

 
 

TTC staining 

 

All animals displayed a TTC  lesion  (Figure  3). Inter-observer agreement between 

lesions was 76.6%. The volumes of the TTC lesion consensus ROIs are shown in Table 2. 
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Discussion 

 
Consistent with our hypothesis, FMISO uptake was higher (~2-fold) in the T2’ lesion ROI 

relative to its mirror ROI, and there was substantial (~50%) overlap between the T2’ and 

FMISO lesion ROIs. These novel findings document that the T2’ lesion effectively reflects 

acutely hypoxic tissue after stroke. Consistent with the idea that the T2’ lesion is largely 

distinct from the ischemic core, it only slightly overlapped with the ADC lesion. Finally, 

consistent with previous literature, the T2’ lesion ROI was clearly hypoperfused. 

 
 

To allow biologically meaningful comparison of the T2’ maps to the FMISO images, the 

T2 and T2* data were acquired at two time-points covering the early and most meaningful 

part of FMISO brain uptake. PET data acquisition was then carried out 120- 150min post-

FMISO administration. FMISO images acquired in this time-frame represent the ‘history’ 

of FMISO uptake since tracer injection (3). Thus, the T2’ and FMISO images largely 

covered the same period of tissue hypoxia. Note that as previously documented, marked 

tracer accumulation does take place in ischemic areas in spite of prevailing 

hypoperfusion(4). The FMISO lesion was defined using automated voxel- based statistical 

mapping deriving an upper threshold from FMISO uptake in the unaffected hemisphere 

(8), using p<0.01 as cut-off. Applying more stringent thresholds (e.g., 0.001 and 0.0001) 

in post hoc sensitivity analyses showed only slightly smaller overlaps, as this has only small 

effects on FMISO ROI volumes (8). 

 
 

As hypothesized, the T2’ lesion ROI showed markedly higher FMISO uptake than mirror 

ROIs, together with substantial overlap with the FMISO lesion. There is no previous T2’ 
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vs PET hypoxia study for direct comparison. As also predicted based on the notion that 

dead or dying neurons are less hypoxic (27), the T2’ lesion overlapped little with the ADC 

lesion. Thus, our data directly establish that the T2’ lesion effectively reflects acutely 

hypoxic, but mainly non-core tissue (see Figure 2). 

 
 

The incomplete overlap between the T2’ and FMISO lesion ROIs, with the latter larger 

than the former (Table 2, Figure 2), may in part relate to intrinsic biological differences 

between these two hypoxia markers. While T2’ reflects the local balance between 

oxygenated and reduced hemoglobin (17), FMISO trapping expresses covalent binding to 

intracellular molecules taking place only in hypoxic conditions (3). A recent clinical study 

reported high FMISO uptake in the core diffusion lesion (9), as also true here (Table 1; 

Figure 2), and previous rodent studies found high FMISO uptake in mildly ischemic areas 

(8). Thus, FMISO trapping appears to take place not just in the ischemic penumbra but also 

to some extent in the early core and oligemia. 

 
 

That in our study the T2’ lesions were hypoperfused is consistent with sudstantial previous 

evidence. Thus, hypoperfused areas were found to have reduced T2’ values in one previous 

rat study which presented images but no actual data (21) as well as reduced R2’ values in 

a monkey study (24) (note: R2’ = 1/T2’). In another rat study assessing T2’ and perfusion 

within the DWI lesion at 90min following 60min MCAo(22), T2’ tended to decrease in 

persistently hypoperfused DWI lesions. Two clinical studies in acute stroke (19, 20) also 

reported significantly reduced T2’ within hypoperfused ROIs. Finally, in patients with 

high-grade carotid artery stenosis or occlusion, Seiler et al (23) also found 
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reduced T2’ within chronically oligemic areas. Importantly, however, none of the above 

studies actually delineated low T2’ lesions as done here. Of note, local increases in cerebral 

blood volume (CBV) are known to potentially cause artefactual reductions in T2’ (17, 28). 

However, in our study CBV was reduced, not increased, within the T2’ lesions, consistent 

with previous animal imaging studies consistently showing reduced CBV within the 

acutely ischemic area, be it using PET (29-31), CT perfusion (32), MR DSC perfusion (33), 

steady-state MR susceptibility imaging with ultra-small iron-oxide particles (34, 35) or 

functional ultrasound (36). 

 
 

The overlap in T2’ lesion ROIs independently drawn by the two observers was suboptimal, 

suggesting that although T2’ lesions are conspicuous, their boundaries may be difficult to 

delineate (see Figure 2). This cannot be explained by inadequate MCAo as shown by the 

presence of ADC, FMISO and TTC lesions in all subjects, but is consistent with a clinical 

study showing limited inter-rater reproducibility in T2’ lesion visual identification (37). Ill-

defined borders of T2’ lesions also appeared to affect previously published T2’ maps both 

from animal studies (21, 22, 24) and acute stroke patients (20, 38), even after head motion 

correction (19). This feature might be related to the intrinsic nature of the T2’ signal, 

together with local changes in CBV and the voxel-based divisions and subtractions 

involved in generating T2’ maps (see Supplemental Methods). 

 
 

The main advantage of T2’ over T2* is its independence from T2 effects, and hence from 

vasogenic edema (17), which can develop rapidly after experimental stroke (39), with T2- 

weighted scans becoming positive as early as 90-120mins post-stroke in rodents (40) and 
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humans (41). For the sake of completeness, we visually compared post-hoc the T2* to the 

T2’ maps, which did not reveal more clearly visible lesions (data not shown; see Figure 2 

as example). To assess whether our findings are specific to T2’, we also generated R2’ 

maps (see above), and duplicated the entire visual and ROI analysis, which as expected 

revealed essentially identical results (data not shown; see Figure 2 as an illustration). 

 
 

As we used a small sample, our findings need independent replication. However, carrying 

out both PET and MR after MCAo in the rodent represents a major challenge, and our study 

is unique. The recent advent of hybrid PET/MR scanners should resolve some of the 

technical obstacles involved (42). 

 
 

In conclusion, this study validated T2’ as a marker of acute brain hypoxia against gold- 

standard PET, which has important clinical implications. Reproducibility of T2’ lesion 

delineation was suboptimal, but further studies should determine if this shortcoming can 

be overcome by optimizing image acquisition and processing and/or observer experience. 
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Figure legends: 

 

Figure 1 

 

Protocol timelines starting with the middle cerebral artery occlusion (MCAo) and finishing 

with tetrazolium chloride (TTC) staining of brain sections (left to right). Total duration 

from the beginning of MR data acquisition to the end of emission PET data acquisition was 

150mins. Legend: LR: low resolution; HR: high resolution; DWI: diffusion-weighted 

imaging; PWI: perfusion-weighted imaging; TS: transmission scan. 

 
 

Figure 2 

 

Representative T2, T2*, T2’ and ADC maps of the same coronal brain section from rat #5, 

obtained at time-points 1 (top) and 2 (bottom), also showing for the latter the CBF, CBV 

and TTP images (MTT image not shown as almost identical to the TTP image). Also shown 

are the corresponding R2’ images obtained by inverting the T2’ images. To the right is 

shown the coregistered FMISO SUV image, acquired 120-150mins after tracer injection 

(see Figure 1) but representing the ‘history’ of tracer behavior in brain since administration 

(see Discussion). The high FMISO uptake area (in yellow) reflects tracer retention in 

hypoxic areas. The images depict reduced T2’ (and increased R2’) signal in the affected 

MCA territory at both time points, geometrically matching the hypoperfused areas. There 

is substantial overlap of the T2’ lesion with the FMISO high uptake region, and little 

overlap with the ADC lesion. These images also illustrate the lack of definite borders of 

the T2’ lesions. Note the good quality of the original T2 and 
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T2* images. Next to the CBF, CBV and TTP images are shown pseudocolor scales used to 

display these images, in units of mls/100g.min, mls/100g and seconds, respectively. The 

monocolor scale (in SUV units; see Methods) used to display the FMISO image is shown 

below the latter. See Tables 1 and 3 for the average FMISO and perfusion values within 

the T2’ lesion ROIs. 

 
 

Figure 3 

 

Representative TTC stained coronal sections from the five animals, consistently displaying 

an acute ischemic lesion. The yellow outlines represent the consensus TTC lesion ROIs. 



22  

 
 
 
 

Tables 

 

Table 1: Mean (± SD) FMISO SUV (% injected dose/kg weight) within the T2’ and 

ADC lesion ROIs and their respective mirror ROIs for each time-point. 

 

 
 Time-point 1 p* Time-point 2 p* 

T2’ ROI 0.91 ± 0.32 0.080 0.94 ± 0.22 0.009 

Mirror ROI 0.56 ± 0.07  0.57 ± 0.08  

     

ADC ROI 1.16 ± 0.19 0.002 1.18 ± 0.11 0.001 

Mirror ROI 0.57 ± 0.09  0.58 ± 0.09  

*: two-tailed paired t-tests comparing FMISO SUV in the lesion ROI to that in its mirror 

ROI 
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Table 2. Individual rat volumes (mm3) for the T2’ consensus ROI and ADC ROI at both 

time-points, and for the FMISO and TTC ROIs. 
 

 

Rat # Time-point 1 

T2' ADC 

Time-point 2 

T2' ADC 

 
FMISO 

 
TTC 

1 94 5.0 132.2 42.5 303.5 166.9 
2 0 31.4 130.3 21.3 249.2 142.3 

3 6.6 0 25.8 0 64.3 32.1 

4 102.5 0.3 68.1 9.3 257.6 259.6 

5 74.2 1.8 112.1 10.1 170.7 106.1 
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Table 3: Perfusion values in the T2’ lesion consensus ROI relative to the contralateral 

mirror ROI for time-point 2 (unitless ratios). 
 

 
 CBF CBV MTT TTP 

Ratio values 

 

P values 

0.52 ± 0.13 

 

p=0.024* 

0.57 ± 0.14 

 

p=0.034* 

1.16 ± 0.26 

 

p=0.016* 

1.21 ± 0.06 

 

p=0.029* 

*: p < 0.05 (one-tailed t-test against unity, n=3) 
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Figure 3 
Representative TTC stained coronal sections from the five animals, consistently displaying an acute ischemic 

lesion. The yellow outlines represent the consensus TTC lesion ROIs. 
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