18 research outputs found

    Phase diagram and magnetic collective excitations of the Hubbard model in graphene sheets and layers

    Full text link
    We discuss the magnetic phases of the Hubbard model for the honeycomb lattice both in two and three spatial dimensions. A ground state phase diagram is obtained depending on the interaction strength U and electronic density n. We find a first order phase transition between ferromagnetic regions where the spin is maximally polarized (Nagaoka ferromagnetism) and regions with smaller magnetization (weak ferromagnetism). When taking into account the possibility of spiral states, we find that the lowest critical U is obtained for an ordering momentum different from zero. The evolution of the ordering momentum with doping is discussed. The magnetic excitations (spin waves) in the antiferromagnetic insulating phase are calculated from the random-phase-approximation for the spin susceptibility. We also compute the spin fluctuation correction to the mean field magnetization by virtual emission/absorpion of spin waves. In the large UU limit, the renormalized magnetization agrees qualitatively with the Holstein-Primakoff theory of the Heisenberg antiferromagnet, although the latter approach produces a larger renormalization

    Correlation and Dimerization Effects on the Physical Behavior of the NR4[Ni(dmit)2]2NR_4 [Ni(dmit)_2]_2 Charge Transfer Salts : A DMRG Study of the Quarter-Filling t-J Model

    Full text link
    The present work studies the quasi one-dimensional Ni(dmit)2Ni(dmit)_2-based compounds within a correlated model. More specifically, we focus our attention on the composed influence of the electronic dimerization-factor and the repulsion, on the transport properties and the localization of the electronic density in the ground-state. Those properties are studied through the computation of the charge gaps (difference between the ionization potential and the electro-affinity: IP-EA) and the long- and short-bond orders of an infinite quarter-filled chain within a tJ(t,U)t-J(t,U) model. The comparison between the computed gaps and the experimental activation energy of the semiconductor NH2Me2[Ni(dmit)2]2NH_2Me_2 [Ni(dmit)_2]_2 allows us to estimate the on-site electronic repulsion of the Ni(dmit)2Ni(dmit)_2 molecule to 1.16eV1.16eV.Comment: 13 pages, 4 figures, RevTe

    Theory of Room Temperature Ferromagnet V(TCNE)_x (1.5 < x < 2): Role of Hidden Flat Bands

    Full text link
    Theoretical studies on the possible origin of room temperature ferromagnetism (ferromagnetic once crystallized) in the molecular transition metal complex, V(TCNE)_x (1.5<x<2) have been carried out. For this family, there have been no definite understanding of crystal structure so far because of sample quality, though the effective valence of V is known to be close to +2. Proposing a new crystal structure for the stoichiometric case of x=2, where the valence of each TCNE molecule is -1 and resistivity shows insulating behavior, exchange interaction among d-electrons on adjacent V atoms has been estimated based on the cluster with 3 vanadium atoms and one TCNE molecule. It turns out that Hund's coupling among d orbitals within the same V atoms and antiferromagnetic coupling between d oribitals and LUMO of TCNE (bridging V atoms) due to hybridization result in overall ferromagnetism (to be precise, ferrimagnetism). This view based on localized electrons is supplemented by the band picture, which indicates the existence of a flat band expected to lead to ferromagnetism as well consistent with the localized view. The off-stoichiometric cases (x<2), which still show ferromagnetism but semiconducting transport properties, have been analyzed as due to Anderson localization.Comment: Accepted for publication in J. Phys. Soc. Jpn. Vol.79 (2010), No. 3 (March issue), in press; 6 pages, 8 figure

    Exchange Interaction in Binuclear Complexes with Rare Earth and Copper Ions: A Many-Body Model Study

    Full text link
    We have used a many-body model Hamiltonian to study the nature of the magnetic ground state of hetero-binuclear complexes involving rare-earth and copper ions. We have taken into account all diagonal repulsions involving the rare-earth 4f and 5d orbitals and the copper 3d orbital. Besides, we have included direct exchange interaction, crystal field splitting of the rare-earth atomic levels and spin-orbit interaction in the 4f orbitals. We have identified the inter-orbital 4f4f repulsion, Uff_{ff} and crystal field parameter, Δf\Delta_f as the key parameters involved in controlling the type of exchange interaction between the rare earth 4f4f and copper 3d spins. We have explored the nature of the ground state in the parameter space of Uff_{ff}, Δf\Delta_f, spin-orbit interaction strength λ\lambda and the 4f4f filling nf_f. We find that these systems show low-spin or high-spin ground state depending on the filling of the 4f4f levels of the rare-earth ion and ground state spin is critically dependent on Uff_{ff} and Δf\Delta_f. In case of half-filling (Gd(III)) we find a reentrant low-spin state as Uff_{ff} is increased, for small values of Δf\Delta_f, which explains the recently reported apparent anomalous anti-ferromagnetic behaviour of Gd(III)-radical complexes. By varying Uff_{ff} we also observe a switch over in the ground state spin for other fillings . We have introduced a spin-orbit coupling scheme which goes beyond L-S or j-j coupling scheme and we find that spin-orbit coupling does not significantly alter the basic picture.Comment: 22 pages, 11 ps figure

    Ghost excitonic insulator transition in layered graphite

    Get PDF
    Some unusual properties of layered graphite, including a linear energy dependence of the quasiparticle damping and weak ferromagnetism at low doping, are explained as a result of the proximity of a single graphene sheet to the excitonic insulator phase which can be further stabilized in a doped system of many layers stacked in the staggered (ABAB...ABAB...) configuration

    Competition between spin and charge polarized states in nanographene ribbons with zigzag edges

    Full text link
    Effects of the nearest neighbor Coulomb interaction on nanographene ribbons with zigzag edges are investigated using the extended Hubbard model within the unrestricted Hartree-Fock approximation. The nearest Coulomb interaction stabilizes a novel electronic state with the opposite electric charges separated and localized along both edges, resulting in a finite electric dipole moment pointing from one edge to the other. This charge-polarized state competes with the peculiar spin-polarized state caused by the on-site Coulomb interaction and is stabilized by an external electric field.Comment: 4 pages; 4 figures; accepted for publication in Phys. Rev. B; related Web site: http://staff.aist.go.jp/k.harigaya/index_E.htm

    -I Institute ofPhysical Chemistry, 103064, Moscow, K 64, -ul Ob. ukha

    No full text
    A model explaining the nature of ferromagnetic exchange in organometallic charge-transfer molecular stacks is presented. It arises because of both the weak delocalization of unpaired electrons occupying the acceptor sites and the ferromagnetic exchange interaction between slightly delocalized acceptor electrons and perfectly localized ones in the d orbitals of the donor sites. It is shown that both the ground state of the system and the low-energy excitations can be described (in line with Anderson s theory of exchange in insulators) with use of a one-dimensional Heisenberg spin Hamiltonian with ferromagnetic nearest-neighbor interactions. Theoretical estimates of the effective exchange parameter of the Heisenberg Hamiltonian agree with those obtained from experimental data on magnetic susceptibility and speci6c heat
    corecore