765 research outputs found

    Transient response characteristics of test chamber Mach number

    Get PDF
    The transient dynamic characteristics of a test chamber Mach number was established for a disturbance initiated in the test chamber. An approximate linear expression was given, showing that the change in the Mach number is linearly proportional to the algebraic sum of the static pressure change in the test chamber and the stagnation pressure change. The static pressure change is the dominating factor. The two pressure changes were also calculated for small Mach number variations, and these results were applied to instrumentation requirements

    A low complexity algorithm for non-monotonically evolving fronts

    Full text link
    A new algorithm is proposed to describe the propagation of fronts advected in the normal direction with prescribed speed function F. The assumptions on F are that it does not depend on the front itself, but can depend on space and time. Moreover, it can vanish and change sign. To solve this problem the Level-Set Method [Osher, Sethian; 1988] is widely used, and the Generalized Fast Marching Method [Carlini et al.; 2008] has recently been introduced. The novelty of our method is that its overall computational complexity is predicted to be comparable to that of the Fast Marching Method [Sethian; 1996], [Vladimirsky; 2006] in most instances. This latter algorithm is O(N^n log N^n) if the computational domain comprises N^n points. Our strategy is to use it in regions where the speed is bounded away from zero -- and switch to a different formalism when F is approximately 0. To this end, a collection of so-called sideways partial differential equations is introduced. Their solutions locally describe the evolving front and depend on both space and time. The well-posedness of those equations, as well as their geometric properties are addressed. We then propose a convergent and stable discretization of those PDEs. Those alternative representations are used to augment the standard Fast Marching Method. The resulting algorithm is presented together with a thorough discussion of its features. The accuracy of the scheme is tested when F depends on both space and time. Each example yields an O(1/N) global truncation error. We conclude with a discussion of the advantages and limitations of our method.Comment: 30 pages, 12 figures, 1 tabl

    Status of magnetic suspension technology

    Get PDF
    The reasons for the continuing interest in the Magnetic Suspension and Balance System (MSBS) are highlighted. Typical problems that can arise because of model-support interference in a transonic wind tunnel are shown to illustrate the need for MSBS. The two magnetic suspension systems in operation at Langley are the only ones active in the U.S. One of these systems is the 13 inch MSBS which was borrowed from the Air Force Arnold Engineering Development Center. The other system is the 6 inch MSBS which was developed by MIT Aerophysics Laboratory with NASA and DOD funding. Each of these systems is combined with a subsonic wind tunnel. Ongoing research in both of these systems is covered. Last year, Madison Magnetics, Inc., completed a contractual design and cost study utilizing some advance concepts for a large MSBS which would be compatible with an 8 foot transonic wind tunnel and the highlights of the study are presented. Sverdrup Technology, Inc., recently performed a study under contract for Langley on the potential usefulness to the aerospace industry of a proposed large MSBS combined with a suitable transonic wind tunnel. The results of that study are discussed. Langley has partially funded the MSBS work at the University of Southampton for about 6 years under a grant arrangement and the major results are summarized

    Building Bridges Across Difference Through International Summer Immersion Programs: A Narrative Inquiry in Racial Identity and Social Justice Orientation

    Get PDF
    International experiential learning programs provide opportunities for young people to develop the necessary skills to succeed in and adapt to the complexity, diversity, and ever-changing landscape of the globalized workforce. There are however, several barriers that prevent students of color from accessing opportunities to be fully engaged in a global discourse – placing them at a severe disadvantage when compared to their White counterparts. While current efforts focus on increasing access for students of color, there is often little done to understand how these students experience and are impacted by these programs. The purpose of this qualitative study sought to understand how a student’s racial identity shapes their experience in a multiracial international service-learning program – and more specifically how it shapes their own ideas and actions around race, belonging, and difference. The study also sought to understand the ways teachers can influence student’s development and learning throughout the immersion trip. There are four major findings of the study: (1) Students’ racial identity shapes their experiences in an international service-learning program in ways that can be both empowering and disempowering, (2) Class shapes the types of connections students formed with their peers and others abroad. Middle to upper-income students adopted a helper mentality, while low-income students felt a sense of responsibility tied to similar experiences of systemic oppression, (3) Class and racial privilege combine in unique ways which shape how students draw lessons from the program and experience encounters with extreme poverty, and (4) The life experiences of teachers and their critical reflections of their own racial identity, power, and privilege fundamentally shape their teaching approach and work as leaders and mentors. These narratives and findings have implications that can be applied more broadly to the ways we approach study abroad experiences for students of color and trainings for educators or support staff. Recommendations include incorporating intentional discussions centered around race and privilege, curriculum that is culturally relevant to students, and educator trainings that build their critical consciousness

    Surgical force detection probe

    Get PDF
    The development progress of a precision electro-mechanical instrument which allows the detection and documentation of the forces and moment applied to human tissue during surgery (under actual operation room conditions), is reported. The pen-shaped prototype probe which measures 1/2 inch in diameter and 7 inches in length was fabricated using an aerodynamic balance. The aerodynamic balance, a standard wind tunnel force and moment sensing transducer, measures the forces and the moments transmitted through the surgeon's hand to the human tissue during surgery. The prototype probe which was fabricated as a development tool was tested successfully. The final version of the surgical force detection probe will be designed based on additional laboratory tests in order to establish the full scale loads. It is expected that the final product will require a simplified aerodynamic balance with two or three force components and one moment component with lighter full scale loads. A signal conditioner was fabricated to process and display the outputs from the prototype probe. This unit will be interfaced with a PC-based data system to provide automatic data acquisition, data processing, and graphics display. The expected overall accuracy of the probe is better than one percent full scale

    Receptors of the pulmonary artery in birds

    Get PDF

    Experiment and analysis on the flow process dynamics of the NASA-Langley eight foot transonic pressure tunnel

    Get PDF
    A dynamic response test performed in a eight foot transonic pressure tunnel is described. The dynamics of the flow process of the wind tunnel at transonic conditions were obtained. Descriptions of the test conditions, instrumentation, presentation of raw data, analysis of data, and finally, based on experimental evidences, an attempt to construct an input output relationship of the flow process from the viewpoints of control engineering are included

    First International Symposium on Strain Gauge Balances

    Get PDF
    The first International Symposium on Strain Gauge Balances was sponsored and held at NASA Langley Research Center during October 22-25, 1996. The symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. Over 130 delegates from 15 countries were in attendance. The program opened with a panel discussion, followed by technical paper sessions, and guided tours of the National Transonic Facility (NTF) wind tunnel, a local commercial balance fabrication facility, and the LaRC balance calibration laboratory. The opening panel discussion addressed "Future Trends in Balance Development and Applications." Forty-six technical papers were presented in 11 technical sessions covering the following areas: calibration, automatic calibration, data reduction, facility reports, design, accuracy and uncertainty analysis, strain gauges, instrumentation, balance design, thermal effects, finite element analysis, applications, and special balances. At the conclusion of the Symposium, a steering committee representing most of the nations and several U.S. organizations attending the Symposium was established to initiate planning for a second international balance symposium, to be held in 1999 in the UK

    Effects of yaw and pitch motion on model attitude measurements

    Get PDF
    This report presents a theoretical analysis of the dynamic effects of angular motion in yaw and pitch on model attitude measurements in which inertial sensors were used during wind tunnel tests. A technique is developed to reduce the error caused by these effects. The analysis shows that a 20-to-1 reduction in model attitude measurement error caused by angular motion is possible with this technique

    High-precision buffer circuit for suppression of regenerative oscillation

    Get PDF
    Precision analog signal conditioning electronics have been developed for wind tunnel model attitude inertial sensors. This application requires low-noise, stable, microvolt-level DC performance and a high-precision buffered output. Capacitive loading of the operational amplifier output stages due to the wind tunnel analog signal distribution facilities caused regenerative oscillation and consequent rectification bias errors. Oscillation suppression techniques commonly used in audio applications were inadequate to maintain the performance requirements for the measurement of attitude for wind tunnel models. Feedback control theory is applied to develop a suppression technique based on a known compensation (snubber) circuit, which provides superior oscillation suppression with high output isolation and preserves the low-noise low-offset performance of the signal conditioning electronics. A practical design technique is developed to select the parameters for the compensation circuit to suppress regenerative oscillation occurring when typical shielded cable loads are driven
    • …
    corecore