255 research outputs found
The Evolution of Dust Disk Sizes from a Homogeneous Analysis of 1-10 Myr old Stars
We utilize ALMA archival data to estimate the dust disk size of 152
protoplanetary disks in Lupus (1-3 Myr), Chamaeleon I (2-3 Myr), and Upper-Sco
(5-11 Myr). We combine our sample with 47 disks from Tau/Aur and Oph whose dust
disk radii were estimated, as here, through fitting radial profile models to
visibility data. We use these 199 homogeneously derived disk sizes to identify
empirical disk-disk and disk-host property relations as well as to search for
evolutionary trends. In agreement with previous studies, we find that dust disk
sizes and millimeter luminosities are correlated, but show for the first time
that the relationship is not universal between regions. We find that disks in
the 2-3 Myr-old Cha I are not smaller than disks in other regions of similar
age, and confirm the Barenfeld et al. (2017) finding that the 5-10 Myr USco
disks are smaller than disks belonging to younger regions. Finally, we find
that the outer edge of the Solar System, as defined by the Kuiper Belt, is
consistent with a population of dust disk sizes which have not experienced
significant truncation
Are inner disc misalignments common? ALMA reveals an isotropic outer disc inclination distribution for young dipper stars
Dippers are a common class of young variable star exhibiting day-long dimmings with depths of up to several tens of perâcent. A standard explanation is that dippers host nearly edge-on (id â 70°) protoplanetary discs that allow close-in (10 au) disc resolved by ALMA and that inner disc misalignments may be common during the protoplanetary phase. More than one mechanism may contribute to the dipper phenomenon, including accretion-driven warps and âbrokenâ discs caused by inclined (sub-)stellar or planetary companions
Immune thrombotic thrombocytopenic purpura: Personalized therapy using ADAMTS-13 activity and autoantibodies
Recently, treatment of immune-mediated thrombotic thrombocytopenic purpura (ITTP) has changed with the advent of caplacizumab in clinical practice. The International Working Group (IWG) has recently integrated the ADAMTS-13 activity/autoantibody monitoring in consensus outcome definitions. We report three ITTP cases during the coronavirus disease 2019 pandemic, that received a systematic evaluation of ADAMTS-13 activity and autoantibodies. We describe how the introduction of caplacizumab and ADAMTS-13 monitoring could change the management of ITTP patients and discuss whether therapeutic choices should be based on the clinical response alone. ADAMTS-13 activity/antibodies were assessed every 5 days. Responses were evaluated according to updated IWG outcome definitions. These kinetics, rather than clinical remission, guided the therapy, allowing early and safe caplacizumab discontinuation and sensible administration of rituximab. Caplacizumab was cautiously discontinued after achieving ADAMTS-13 complete remission. These cases illustrate that prospective ADAMTS-13 evaluation and use of updated IWG definitions may improve real-life patientsâ management in the caplacizumab era
A multi-wavelength analysis for interferometric (sub-)mm observations of protoplanetary disks: radial constraints on the dust properties and the disk structure
Theoretical models of grain growth predict dust properties to change as a
function of protoplanetary disk radius, mass, age and other physical
conditions. We lay down the methodology for a multi-wavelength analysis of
(sub-)mm and cm continuum interferometric observations to constrain
self-consistently the disk structure and the radial variation of the dust
properties. The computational architecture is massively parallel and highly
modular. The analysis is based on the simultaneous fit in the uv-plane of
observations at several wavelengths with a model for the disk thermal emission
and for the dust opacity. The observed flux density at the different
wavelengths is fitted by posing constraints on the disk structure and on the
radial variation of the grain size distribution. We apply the analysis to
observations of three protoplanetary disks (AS 209, FT Tau, DR Tau) for which a
combination of spatially resolved observations in the range ~0.88mm to ~10mm is
available (from SMA, CARMA, and VLA), finding evidence of a decreasing maximum
dust grain size (a_max) with radius. We derive large a_max values up to 1 cm in
the inner disk between 15 and 30 AU and smaller grains with a_max~1 mm in the
outer disk (R > 80AU). In this paper we develop a multi-wavelength analysis
that will allow this missing quantity to be constrained for statistically
relevant samples of disks and to investigate possible correlations with disk or
stellar parameters.Comment: 19 pages, 15 figures, accepted for publication in A&
- âŠ