40 research outputs found

    Induction of Sodium/Iodide Symporter (NIS) Expression and Radioiodine Uptake in Non-Thyroid Cancer Cells

    Get PDF
    Background: This study was designed to explore the therapeutic potential of suppressing MAP kinase and PI3K/Akt pathways and histone deacetylase (HDAC) to induce the expression of sodium/iodide symporter (NIS) and radioiodine uptake in non-thyroid cancer cells. Methods: We tested the effects of the MEK inhibitor RDEA119, the Akt inhibitor perifosine, and the HDAC inhibitor SAHA on NIS expression in thirteen human cancer cell lines derived from melanoma, hepatic carcinoma, gastric carcinoma, colon carcinoma, breast carcinoma, and brain cancers. We also examined radioiodine uptake and histone acetylation at the NIS promoter in selected cells. Results: Overall, the three inhibitors could induce NIS expression, to various extents, in melanoma and all the epithelial carcinoma-derived cells but not in brain cancer-derived cells. SAHA was most effective and its effect could be significantly enhanced by RDEA119 and perifosine. The expression of NIS, at both mRNA and protein levels, was most robust in the melanoma cell M14, hepatic carcinoma cell HepG2, and the gastric carcinoma cell MKN-7 cell. Radioiodine uptake was correspondingly induced, accompanied by robust increase in histone acetylation at the NIS promoter, in these cells when treated with the three inhibitors. Conclusions: This is the first demonstration that simultaneously suppressing the MAP kinase and PI3K/Akt pathways and HDAC could induce robust NIS expression and radioiodine uptake in certain non-thyroid human cancer cells, providing novel therapeutic implications for adjunct radioiodine treatment of these cancers

    Expression of the Na(+)/l(- )symporter (NIS) is markedly decreased or absent in gastric cancer and intestinal metaplastic mucosa of Barrett esophagus

    Get PDF
    BACKGROUND: The sodium/iodide symporter (NIS) is a plasma membrane glycoprotein that mediates iodide (I(-)) transport in the thyroid, lactating breast, salivary glands, and stomach. Whereas NIS expression and regulation have been extensively investigated in healthy and neoplastic thyroid and breast tissues, little is known about NIS expression and function along the healthy and diseased gastrointestinal tract. METHODS: Thus, we investigated NIS expression by immunohistochemical analysis in 155 gastrointestinal tissue samples and by immunoblot analysis in 17 gastric tumors from 83 patients. RESULTS: Regarding the healthy Gl tract, we observed NIS expression exclusively in the basolateral region of the gastric mucin-producing epithelial cells. In gastritis, positive NIS staining was observed in these cells both in the presence and absence of Helicobacter pylori. Significantly, NIS expression was absent in gastric cancer, independently of its histological type. Only focal faint NIS expression was detected in the direct vicinity of gastric tumors, i.e., in the histologically intact mucosa, the expression becoming gradually stronger and linear farther away from the tumor. Barrett mucosa with junctional and fundic-type columnar metaplasia displayed positive NIS staining, whereas Barrett mucosa with intestinal metaplasia was negative. NIS staining was also absent in intestinalized gastric polyps. CONCLUSION: That NIS expression is markedly decreased or absent in case of intestinalization or malignant transformation of the gastric mucosa suggests that NIS may prove to be a significant tumor marker in the diagnosis and prognosis of gastric malignancies and also precancerous lesions such as Barrett mucosa, thus extending the medical significance of NIS beyond thyroid disease

    Microarray analysis of genes associated with cell surface NIS protein levels in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Na<sup>+</sup>/I<sup>- </sup>symporter (NIS)-mediated iodide uptake allows radioiodine therapy for thyroid cancer. NIS is also expressed in breast tumors, raising potential for radionuclide therapy of breast cancer. However, NIS expression in most breast cancers is low and may not be sufficient for radionuclide therapy. We aimed to identify biomarkers associated with NIS expression such that mechanisms underlying NIS modulation in human breast tumors may be elucidated.</p> <p>Methods</p> <p>Published oligonucleotide microarray data within the National Center for Biotechnology Information Gene Expression Omnibus database were analyzed to identify gene expression tightly correlated with NIS mRNA level among human breast tumors. NIS immunostaining was performed in a tissue microarray composed of 28 human breast tumors which had corresponding oligonucleotide microarray data available for each tumor such that gene expression associated <it>w</it>ith cell surface NIS protein level could be identified.</p> <p>Results and Discussion</p> <p>NIS mRNA levels do not vary among breast tumors or when compared to normal breast tissues when detected by Affymetrix oligonucleotide microarray platforms. Cell surface NIS protein levels are much more variable than their corresponding NIS mRNA levels. Despite a limited number of breast tumors examined, our analysis identified cysteinyl-tRNA synthetase as a biomarker that is highly associated with cell surface NIS protein levels in the ER-positive breast cancer subtype.</p> <p>Conclusions</p> <p>Further investigation on genes associated with cell surface NIS protein levels within each breast cancer molecular subtype may lead to novel targets for selectively increasing NIS expression/function in a subset of breast cancers patients.</p

    Identification of glucose transporters in Aspergillus nidulans

    Get PDF
    o characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose.The authors would like to thank the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brazil for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Mutational analysis of the major proline transporter (PrnB) of Aspergillus nidulans

    No full text
    PrnB, the L- proline transporter of Aspergillus nidulans, belongs to the Amino acid Polyamine Organocation (APC) transporter family conserved in prokaryotes and eukaryotes. In silico analysis and limited biochemical evidence suggest that APC transporters comprise 12 transmembrane segments (TMS) connected with relatively short hydrophilic loops (L). However, very little is known on the structure-function relationships in APC transporters. This work makes use of the A. nidulans PrnB transporter to address structure-function relationships by selecting, constructing and analysing several prnB mutations. In the sample, most isolated missense mutations affecting PrnB function map in the borders of cytoplasmic loops with transmembrane domains. These are I119N and G120W in L2-TMS3, F278V in L6-TMS7, NRT378NRTNRT and PY382PYPY in L8-TMS9 and T456N in L10-TMS11. A single mutation (G403E) causing, however, a very weak phenotype, maps in the borders of an extracellular loop (L9-TMS10). An important role of helix TMS6 for proline binding and transport is supported by mutations K245L and, especially, F248L that clearly affect PrnB uptake kinetics. The critical role of these residues in proline binding and transport is further shown by constructing and analysing isogenic strains expressing selected prnB alleles fused to the gene encoding the Green Fluorescent Protein (GFP). It is shown that, while some prnB mutations affect proper translocation of PrnB in the membrane, at least two mutants, K245E and F248L, exhibit physiological cellular expression of PrnB and, thus, the corresponding mutations can be classified as mutations directly affecting proline binding and/or transport. Finally, comparison of these results with analogous studies strengthens conclusions concerning amino acid residues critical for function in APC transporters

    Thyroid autoimmunity and breast cancer—cause or effect?

    No full text
    corecore