49,276 research outputs found

    Tunable solid-state laser technology for applications to scientific and technological experiments from space

    Get PDF
    Current plans for the Earth Observing System (EOS) include development of a lidar facility to conduct scientific experiments from a polar orbiting platforms. A recommended set of experiments were scoped, which includes techniques of atmospheric backscatter (Lidar), Differential Absorption Lidar (DIAL), altimetry, and retroranging. Preliminary assessments of the resources (power, weight, volume) required by the Eos Lidar Facility were conducted. A research program in tunable solid state laser technology was developed, which includes laser materials development, modeling and experiments on the physics of solid state laser materials, and development of solid state laser transmitters with a strong focus on Eos scientific investigations. Some of the system studies that were conducted which highlight the payoff of solid state laser technology for the Eos scientific investigations will be discussed. Additionally, a summary of some promising research results which have recently emerged from the research program will be presented

    Rotational predissociation of extremely weakly bound atom-molecule complexes produced by Feshbach resonance association

    Full text link
    We study the rotational predissociation of atom - molecule complexes with very small binding energy. Such complexes can be produced by Feshbach resonance association of ultracold molecules with ultracold atoms. Numerical calculations of the predissociation lifetimes based on the computation of the energy dependence of the scattering matrix elements become inaccurate when the binding energy is smaller than the energy width of the predissociating state. We derive expressions that represent accurately the predissociation lifetimes in terms of the real and imaginary parts of the scattering length and effective range for molecules in an excited rotational state. Our results show that the predissociation lifetimes are the longest when the binding energy is positive, i.e. when the predissociating state is just above the excited state threshold.Comment: 17 pages, 5 figure

    Harnessing shared identities to mobilise resilient responses to the COVID-19 pandemic

    Get PDF
    Shared social identifications (family, community, nation, humanity) predict normative actions and psychological well-being, and can be invoked discursively by leaders to mobilise their followers. We illustrate the potential for harnessing shared identities to mobilise resilient public responses against COVID-19. Study 1 explored which patterns of social identification predicted protective behaviours (personal hygiene, physical distancing), prosocial actions (helping proximal and distal others), and psychological well-being (mental well-being, depressive symptoms, anxiety), among 560 UK adults surveyed during lockdown. Study 2 contrasted Prime Minister Ardern’s use of identity-based rhetoric to mobilise New Zealanders, with Prime Minister Johnson’s use of individualistic appeals to the UK public. Our findings suggest how political leaders might beneficially use social identities in communications about extreme events

    Comparing Probabilistic Models for Melodic Sequences

    Get PDF
    Modelling the real world complexity of music is a challenge for machine learning. We address the task of modeling melodic sequences from the same music genre. We perform a comparative analysis of two probabilistic models; a Dirichlet Variable Length Markov Model (Dirichlet-VMM) and a Time Convolutional Restricted Boltzmann Machine (TC-RBM). We show that the TC-RBM learns descriptive music features, such as underlying chords and typical melody transitions and dynamics. We assess the models for future prediction and compare their performance to a VMM, which is the current state of the art in melody generation. We show that both models perform significantly better than the VMM, with the Dirichlet-VMM marginally outperforming the TC-RBM. Finally, we evaluate the short order statistics of the models, using the Kullback-Leibler divergence between test sequences and model samples, and show that our proposed methods match the statistics of the music genre significantly better than the VMM.Comment: in Proceedings of the ECML-PKDD 2011. Lecture Notes in Computer Science, vol. 6913, pp. 289-304. Springer (2011

    Energy benchmarks for water clusters and ice structures from an embedded many-body expansion

    Get PDF
    We show how an embedded many-body expansion (EMBE) can be used to calculate accurate \emph{ab initio} energies of water clusters and ice structures using wavefunction-based methods. We use the EMBE described recently by Bygrave \emph{et al.} (J. Chem. Phys. \textbf{137}, 164102 (2012)), in which the terms in the expansion are obtained from calculations on monomers, dimers, etc. acted on by an approximate representation of the embedding field due to all other molecules in the system, this field being a sum of Coulomb and exchange-repulsion fields. Our strategy is to separate the total energy of the system into Hartree-Fock and correlation parts, using the EMBE only for the correlation energy, with the Hartree-Fock energy calculated using standard molecular quantum chemistry for clusters and plane-wave methods for crystals. Our tests on a range of different water clusters up to the 16-mer show that for the second-order M\o{}ller-Plesset (MP2) method the EMBE truncated at 2-body level reproduces to better than 0.1 mEhE_{\rm h}/monomer the correlation energy from standard methods. The use of EMBE for computing coupled-cluster energies of clusters is also discussed. For the ice structures Ih, II and VIII, we find that MP2 energies near the complete basis-set limit reproduce very well the experimental values of the absolute and relative binding energies, but that the use of coupled-cluster methods for many-body correlation (non-additive dispersion) is essential for a full description. Possible future applications of the EMBE approach are suggested
    • …
    corecore