31,407 research outputs found

    Dynamics of midlatitude light ion trough and plasmatails

    Get PDF
    Light ion trough measurements near midnight made by the RF ion mass spectrometer on OGO-4 operating in the high resolution mode in Feb. 1968 reveal the existence of irregular structure on the low latitude side of the midlatitude trough. Using two different relations between the equatorial convection electric field, assumed spatially invariant and directed from dawn to dusk, and Kp (one based on plasmapause measurements, the other on polar cap E field measurements) a model development was made of the outer plasmasphere. The model calculations produced multiple plasmatail extensions of the plasmasphere which compare favorably with the observed irregularities. Due to magnetic local time differences between the Northern and Southern Hemisphere along OGO's orbit, the time dependent irregularity structure observed is not symmetrical about the equator. The model development produces an outer plasmasphere boundary location which varies similarly to the observed minimum density point of the light ion trough. However the measurements are not extensive enough to yield conclusive proof that one of the electric field models is better than the other

    Determination of Frequency and Distribution of Hessian Fly (Diptera: Cecidomyiidae) Biotypes in the Northeastern Soft Wheat Region

    Get PDF
    Fifteen collections of Hessian flies from the northern soft winter wheat region of the United States were used to determine the composition and frequency of biotypes. The wheat cultivars \u27Seneca\u27 (H7Hs), \u27Monon\u27 (H3), \u27Knox 62\u27 (~, H7Hg), and \u27Abe\u27 (Hs) were used as differentials. Biotypes J and L replaced biotype B as the prevalent biotype in Indiana, since wheat cultivars having the Hs and the H6 genes have been grown. Biotype GP, the least virulent of any Hessian fly biotypes, was still present in New York indicating that wheat cuItivars with no genes for resistance are still being grown there. The genetic variability of Hessian fly biotypes that enables them to overcome the resistance in wheat cultivars is discussed

    Thermal tunability in terahertz metamaterials fabricated on strontium titanate single crystal substrates

    Full text link
    We report an experimental demonstration of thermal tuning of resonance frequency in a planar terahertz metamaterial consisting of a gold split-ring resonator array fabricated on a bulk single crystal strontium titanate (SrTiO3) substrate. Cooling the metamaterial starting from 409 K down to 150 K causes about 50% shift in resonance frequency as compare to its room temperature resonance, and there is very little variation in resonance strength. The resonance shift is due to the temperature-dependent refractive index (or the dielectric constant) of the strontium titanate. The experiment opens up avenues for designing tunable terahertz devices by exploiting the temperature sensitive characteristic of high dielectric constant substrates and complex metal oxide materials.Comment: 6 pages, 3 figures, accepted at Optics Letter

    A Balanced Route Design for Min-Max Multiple-Depot Rural Postman Problem (MMMDRPP): a police patrolling case

    Get PDF
    Providing distributed services on road networks is an essential concern for many applications, such as mail delivery, logistics and police patrolling. Designing effective and balanced routes for these applications is challenging, especially when involving multiple postmen from distinct depots. In this research, we formulate this routing problem as a Min-Max Multiple-Depot Rural Postman Problem (MMMDRPP). To solve this routing problem, we develop an efficient tabu-search-based algorithm and propose three novel lower bounds to evaluate the routes. To demonstrate its practical usefulness, we show how to formulate the route design for police patrolling in London as an MMMDRPP and generate balanced routes using the proposed algorithm. Furthermore, the algorithm is tested on multiple adapted benchmark problems. The results demonstrate the efficiency of the algorithm in generating balanced routes

    The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles

    Get PDF
    AbstractAn epoxy resin, cured using an anhydride hardener, has been modified by the addition of pre-formed polysiloxane core-shell rubber (S-CSR) particles with a mean diameter of 0.18 μm. The glass transition temperature, Tg, of the cured unmodified epoxy polymer was 148 °C, and this was unchanged after the addition of the S-CSR particles. The polysiloxane rubber particles had a Tg of about −100 °C. Atomic force microscopy showed that the S-CSR particles were well-dispersed in the epoxy polymer. The addition of the S-CSR particles reduced the Young's modulus and tensile strength of the epoxy polymer, but at 20 °C the fracture energy, GIc, increased from 117 J/m2 for the unmodified epoxy to 947 J/m2 when 20 wt% of the S-CSR particles were incorporated. Fracture tests were also performed at −55 °C, −80 °C, and −109 °C. The results showed that the measured fracture energy of the S-CSR-modified epoxy polymers decreased significantly below room temperature. For example, at −109 °C, a fracture energy of 481 J/m2 was measured using 20 wt% of S-CSR particles. Nevertheless, this value of toughness still represented a major increase compared with the unmodified epoxy polymer, which possessed a value of GIc of 174 J/m2 at this very low test temperature. Thus, a clear fact that emerged was that the addition to the epoxy polymer of the S-CSR particles may indeed lead to significant toughening of the epoxy, even at temperatures as low as about −100 °C. The toughening mechanisms induced by the S-CSR particles were identified as (a) localised plastic shear-band yielding around the particles and (b) cavitation of the particles followed by plastic void growth of the epoxy polymer. These mechanisms were modelled using the Hsieh et al. approach [33,49] and the values of GIc of the S-CSR-modified epoxy polymers at the different test temperatures were calculated. Excellent agreement was found between the predictions and the experimentally measured fracture energies. Further, the experimental and modelling results of the present study indicated that the extent of plastic void growth was suppressed at low temperatures for the S-CSR-modified epoxy polymers, but that the localised shear-band yielding mechanism was relatively insensitive to the test temperature
    • …
    corecore