1,159 research outputs found

    Energy-based temporal neural networks for imputing missing values

    Get PDF
    Imputing missing values in high dimensional time series is a difficult problem. There have been some approaches to the problem [11,8] where neural architectures were trained as probabilistic models of the data. However, we argue that this approach is not optimal. We propose to view temporal neural networks with latent variables as energy-based models and train them for missing value recovery directly. In this paper we introduce two energy-based models. The first model is based on a one dimensional convolution and the second model utilizes a recurrent neural network. We demonstrate how ideas from the energy-based learning framework can be used to train these models to recover missing values. The models are evaluated on a motion capture dataset

    Comparing Probabilistic Models for Melodic Sequences

    Get PDF
    Modelling the real world complexity of music is a challenge for machine learning. We address the task of modeling melodic sequences from the same music genre. We perform a comparative analysis of two probabilistic models; a Dirichlet Variable Length Markov Model (Dirichlet-VMM) and a Time Convolutional Restricted Boltzmann Machine (TC-RBM). We show that the TC-RBM learns descriptive music features, such as underlying chords and typical melody transitions and dynamics. We assess the models for future prediction and compare their performance to a VMM, which is the current state of the art in melody generation. We show that both models perform significantly better than the VMM, with the Dirichlet-VMM marginally outperforming the TC-RBM. Finally, we evaluate the short order statistics of the models, using the Kullback-Leibler divergence between test sequences and model samples, and show that our proposed methods match the statistics of the music genre significantly better than the VMM.Comment: in Proceedings of the ECML-PKDD 2011. Lecture Notes in Computer Science, vol. 6913, pp. 289-304. Springer (2011

    Chemical availability of fallout radionuclides in cryoconite

    Get PDF
    Atmospheric deposition on glaciers is a major source of legacy fallout radionuclides (FRNs) accumulating in cryoconite, a dark granular material with surface properties that efficiently bind FRN contaminants (specifically 137Cs; 210Pb; 241Am). Cryoconite-bound FRNs in glaciers can be released when they interact with and are transported by glacial meltwater, resulting in the discharge of amassed particulate contaminants into aquatic and terrestrial environments downstream. The environmental consequences of FRN release from the cryosphere are poorly understood, including impacts of cryoconite-sourced FRNs for alpine food chains. Consequently, there is limited understanding of potential health risks to humans and animals associated with the consumption of radiologically-contaminated meltwater. To assess the chemical availability of cryoconite-adsorbed FRNs we used a three-stage sequential chemical extraction method, applied to cryoconite samples from glaciers in Sweden and Iceland, with original FRN activity concentrations up to 3300 Bq kg−1 for 137Cs, 10,950 Bq kg−1 for unsupported 210Pb (210Pbun) and 24.1 Bq kg−1 for 241Am, and orders of magnitude above regional backgrounds. Our results demonstrate that FRNs attached to cryoconite are solubilized to different degrees, resulting in a stage-wise release of 210Pbun involving significant stepwise solubilization, while 137Cs and 241Am tend to be retained more in the particulate phase. This work provides an insight into the vulnerability of pristine glacial environments to the mobilization of FRN-contaminated particles released during glacier melting, and their potential impact on glacial-dependent ecology

    Kaluza-Klein Holography

    Full text link
    We construct a holographic map between asymptotically AdS_5 x S^5 solutions of 10d supergravity and vacuum expectation values of gauge invariant operators of the dual QFT. The ingredients that enter in the construction are (i) gauge invariant variables so that the KK reduction is independent of any choice of gauge fixing; (ii) the non-linear KK reduction map from 10 to 5 dimensions (constructed perturbatively in the number of fields); (iii) application of holographic renormalization. A non-trivial role in the last step is played by extremal couplings. This map allows one to reliably compute vevs of operators dual to any KK fields. As an application we consider a Coulomb branch solution and compute the first two non-trivial vevs, involving operators of dimension 2 and 4, and reproduce the field theory result, in agreement with non-renormalization theorems. This constitutes the first quantitative test of the gravity/gauge theory duality away from the conformal point involving a vev of an operator dual to a KK field (which is not one of the gauged supergravity fields).Comment: 47 pages, v2: minor improvements, version to appear in JHE

    On the harmonic measure of stable processes

    Full text link
    Using three hypergeometric identities, we evaluate the harmonic measure of a finite interval and of its complementary for a strictly stable real L{\'e}vy process. This gives a simple and unified proof of several results in the literature, old and recent. We also provide a full description of the corresponding Green functions. As a by-product, we compute the hitting probabilities of points and describe the non-negative harmonic functions for the stable process killed outside a finite interval

    The late stages of evolution of helium star-neutron star binaries and the formation of double neutron star systems

    Full text link
    With a view to understanding the formation of double neutron-stars (DNS), we investigate the late stages of evolution of helium stars with masses of 2.8 - 6.4 Msun in binary systems with a 1.4 Msun neutron-star companion. We found that mass transfer from 2.8 - 3.3 Msun helium stars and from 3.3 - 3.8 Msun in very close orbits (P_orb > 0.25d) will end up in a common-envelope (CE) and spiral-in phase due to the development of a convective helium envelope. If the neutron star has sufficient time to complete the spiraling-in process before the core collapses, the system will produce very tight DNSs (P_orb ~ 0.01d) with a merger timescale of the order of 1 Myr or less. These systems would have important consequences for the detection rate of GWR and for the understanding of GRB progenitors. On the other hand, if the time left until the explosion is shorter than the orbital-decay timescale, the system will undergo a SN explosion during the CE phase. Helium stars with masses 3.3 - 3.8 Msun in wider orbits (P_orb > 0.25d) and those more massive than 3.8 Msun do not go through CE evolution. The remnants of these massive helium stars are DNSs with periods in the range of 0.1 - 1 d. This suggests that this range of mass includes the progenitors of the galactic DNSs with close orbits (B1913+16 and B1534+12). A minimum kick velocity of 70 km/s and 0 km/s (for B1913+16 and B1534+12, respectively) must have been imparted at the birth of the pulsar's companion. The DNSs with wider orbits (J1518+4904 and probably J1811-1736) are produced from helium star-neutron star binaries which avoid RLOF, with the helium star more massive than 2.5 Msun. For these systems the minimum kick velocities are 50 km/s and 10 km/s (for J1518+4904 and J1811-1736, respectively).Comment: 16 pages, latex, 12 figures, accepted for publication in MNRA

    Precollege nanotechnology education: A different kind of thinking

    Get PDF
    The introduction of nanotechnology education into K-12 education has happened so quickly that there has been little time to evaluate the approaches and knowledge goals that are most effective to teach precollege students. This review of nanotechnology education examines the instructional approaches and types of knowledge that frame nanotechnology precollege education. Methods used to teach different forms of knowledge are examined in light of the goal of creating effective and meaningful instruction. The developmental components needed to understand concepts such as surface area to volume relationships as well as the counterintuitive behavior of nanoscale materials are described. Instructional methods used in precollege nanotechnology education and the levels at which different nanoscale topics are introduced is presented and critiqued. Suggestions are made for the development of new nanotechnology educational programs that are developmental, sequenced, and meaningful

    Four graviton scattering amplitude from SNR8S^N\large{{\bf R}}^{8} supersymmetric orbifold sigma model

    Full text link
    In the IR limit the Matrix string theory is expected to be described by the SNR8S^N\R^{8} supersymmetric orbifold sigma model. Recently Dijkgraaf, Verlinde and Verlinde proposed a vertex that may describe the type IIA string interaction. In this paper using this interaction vertex we derive the four graviton scattering amplitude from the orbifold model in the large NN limit.Comment: latex, 35 pages, misprints are corrected, the final version to appear in Nucl.Phys.

    Pair excitations and parameters of state of imbalanced Fermi gases at finite temperatures

    Full text link
    The spectra of low-lying pair excitations for an imbalanced two-component superfluid Fermi gas are analytically derived within the path-integral formalism taking into account Gaussian fluctuations about the saddle point. The spectra are obtained for nonzero temperatures, both with and without imbalance, and for arbitrary interaction strength. On the basis of the pair excitation spectrum, we have calculated the thermodynamic parameters of state of cold fermions and the first and second sound velocities. The parameters of pair excitations show a remarkable agreement with the Monte Carlo data and with experiment.Comment: 14 pages, 5 figure
    corecore