11,909 research outputs found

    Supporting simulation in industry through the application of grid computing

    Get PDF
    An increased need for collaborative research, together with continuing advances in communication technology and computer hardware, has facilitated the development of distributed systems that can provide users access to geographically dispersed computing resources that are administered in multiple computer domains. The term grid computing, or grids, is popularly used to refer to such distributed systems. Simulation is characterized by the need to run multiple sets of computationally intensive experiments. Large scale scientific simulations have traditionally been the primary benefactor of grid computing. The application of this technology to simulation in industry has, however, been negligible. This research investigates how grid technology can be effectively exploited by users to model simulations in industry. It introduces our desktop grid, WinGrid, and presents a case study conducted at a leading European investment bank. Results indicate that grid computing does indeed hold promise for simulation in industry

    \u27It all happens here:\u27 Locating Salvation in Abel Ferrara\u27s Bad Lieutenant

    Get PDF
    Bad Lieutenant offers a both a narrative and a theology of salvation. Both are focussed on the death of the Lieutenant at the end of the film. This essay traces these accounts of salvation and finds that they are both flawed, in nature and scope. These flaws derive from an exclusive focus on the death of the Lieutenant and the cross of Christ as the loci of salvation. The value of Ferrara\u27s work is in the articulation of these flaws, as they point to dangers for Christian theology as it seeks to articulate the salvation offered by Christ

    Cloning, purification and characterization of the 6-phospho-3-hexulose isomerase YckF from Bacillus subtilis

    Get PDF
    The enzyme 6-phospho-3-hexulose isomerase (YckF) from Bacillus subtilis has been prepared and crystallized in a form suitable for X-ray crystallographic analysis. Crystals were grown by the hanging-drop method at 291 K using polyethylene glycol 2000 monomethylether as precipitant. They diffract beyond 1.7 A using an in-house Cu Kalpha source and belong to either space group P6(5)22 or P6(1)22, with unit-cell parameters a = b = 72.4, c = 241.2 A, and have two molecules of YckF in the asymmetric unit

    Modeling the initiation of others into injection drug use, using data from 2,500 injectors surveyed in Scotland during 2008-2009

    Get PDF
    The prevalence of injection drug use has been of especial interest for assessment of the impact of blood-borne viruses. However, the incidence of injection drug use has been underresearched. Our 2-fold aim in this study was to estimate 1) how many other persons, per annum, an injection drug user (IDU) has the equivalent of full responsibility (EFR) for initiating into injection drug use and 2) the consequences for IDUs' replacement rate. EFR initiation rates are strongly associated with incarceration history, so that our analysis of IDUs' replacement rate must incorporate when, in their injecting career, IDUs were first incarcerated. To do so, we have first to estimate piecewise constant incarceration rates in conjunction with EFR initiation rates, which are then combined with rates of cessation from injecting to model IDUs' replacement rate over their injecting career, analogous to the reproduction number of an epidemic model. We apply our approach to Scotland's IDUs, using over 2,500 anonymous injector participants who were interviewed in Scotland's Needle Exchange Surveillance Initiative during 2008-2009. Our approach was made possible by the inclusion of key questions about initiations. Finally, we extend our model to include an immediate quit rate, as a reasoned compensation for higher-than-expected replacement rates, and we estimate how high initiates' quit rate should be for IDUs' replacement rate to be 1

    Grid-enabling FIRST: Speeding up simulation applications using WinGrid

    Get PDF
    The vision of grid computing is to make computational power, storage capacity, data and applications available to users as readily as electricity and other utilities. Grid infrastructures and applications have traditionally been geared towards dedicated, centralized, high performance clusters running on UNIX flavour operating systems (commonly referred to as cluster-based grid computing). This can be contrasted with desktop-based grid computing which refers to the aggregation of non-dedicated, de-centralized, commodity PCs connected through a network and running (mostly) the Microsoft Windowstrade operating system. Large scale adoption of such Windowstrade-based grid infrastructure may be facilitated via grid-enabling existing Windows applications. This paper presents the WinGridtrade approach to grid enabling existing Windowstrade based commercial-off-the-shelf (COTS) simulation packages (CSPs). Through the use of a case study developed in conjunction with Ford Motor Company, the paper demonstrates how experimentation with the CSP Witnesstrade and FIRST can achieve a linear speedup when WinGridtrade is used to harness idle PC computing resources. This, combined with the lessons learned from the case study, has encouraged us to develop the Web service extensions to WinGridtrade. It is hoped that this would facilitate wider acceptance of WinGridtrade among enterprises having stringent security policies in place

    Better by design: Business preferences for environmental regulatory reform

    Get PDF
    We present the preferences for environmental regulatory reform expressed by 30 UK businesses and industry bodies from 5 sectors. While five strongly preferred voluntary regulation, seven expressed doubts about its effectiveness, and 18 expressed no general preference between instrument types. Voluntary approaches were valued for flexibility and lower burdens, but direct regulation offered stability and a level playing field. Respondents sought regulatory frameworks that: are coherent; balance clarity, prescription and flexibility; are enabled by positive regulatory relationships; administratively efficient; targeted according to risk magnitude and character; evidence-based and that deliver long-term market stability for regulatees. Anticipated differences in performance between types of instrument can be undermined by poor implementation. Results underline the need for policy makers and regulators to tailor an effective mix of instruments for a given sector, and to overcome analytical, institutional and political barriers to greater coherence, to better coordinate existing instruments and tackle new environmental challenges as they emerge

    Identification of criticality in neuronal avalanches: II. A theoretical and empirical investigation of the Driven case

    Get PDF
    The observation of apparent power laws in neuronal systems has led to the suggestion that the brain is at, or close to, a critical state and may be a self-organised critical system. Within the framework of self-organised criticality a separation of timescales is thought to be crucial for the observation of power-law dynamics and computational models are often constructed with this property. However, this is not necessarily a characteristic of physiological neural networks—external input does not only occur when the network is at rest/a steady state. In this paper we study a simple neuronal network model driven by a continuous external input (i.e. the model does not have an explicit separation of timescales from seeding the system only when in the quiescent state) and analytically tuned to operate in the region of a critical state (it reaches the critical regime exactly in the absence of input—the case studied in the companion paper to this article). The system displays avalanche dynamics in the form of cascades of neuronal firing separated by periods of silence. We observe partial scale-free behaviour in the distribution of avalanche size for low levels of external input. We analytically derive the distributions of waiting times and investigate their temporal behaviour in relation to different levels of external input, showing that the system’s dynamics can exhibit partial long-range temporal correlations. We further show that as the system approaches the critical state by two alternative ‘routes’, different markers of criticality (partial scale-free behaviour and long-range temporal correlations) are displayed. This suggests that signatures of criticality exhibited by a particular system in close proximity to a critical state are dependent on the region in parameter space at which the system (currently) resides

    Identification of criticality in neuronal avalanches: I. A theoretical investigation of the non-driven case

    Get PDF
    In this paper, we study a simple model of a purely excitatory neural network that, by construction, operates at a critical point. This model allows us to consider various markers of criticality and illustrate how they should perform in a finite-size system. By calculating the exact distribution of avalanche sizes, we are able to show that, over a limited range of avalanche sizes which we precisely identify, the distribution has scale free properties but is not a power law. This suggests that it would be inappropriate to dismiss a system as not being critical purely based on an inability to rigorously fit a power law distribution as has been recently advocated. In assessing whether a system, especially a finite-size one, is critical it is thus important to consider other possible markers. We illustrate one of these by showing the divergence of susceptibility as the critical point of the system is approached. Finally, we provide evidence that power laws may underlie other observables of the system that may be more amenable to robust experimental assessment

    A comparison of CMB- and HLA-based approaches to type I interoperability reference model problems for COTS-based distributed simulation

    Get PDF
    Commercial-off-the-shelf (COTS) simulation packages (CSPs) are software used by many simulation modellers to build and experiment with models of various systems in domains such as manufacturing, health, logistics and commerce. COTS distributed simulation deals with the interoperation of CSPs and their models. Such interoperability has been classified into six interoperability reference models. As part of an on-going standardisation effort, this paper introduces the COTS Simulation Package Emulator, a proposed benchmark that can be used to investigate Type I interoperability problems in COTS distributed simulation. To demonstrate its use, two approaches to this form of interoperability are discussed, an implementation of the CMB conservative algorithm, an example of a so-called “light” approach, and an implementation of the HLA TAR algorithm, an example of a so-called “heavy” approach. Results from experimentation over four federation topologies are presented and it is shown the HLA approach out performs the CMB approach in almost all cases. The paper concludes that the CSPE benchmark is a valid basis from which the most efficient approach to Type I interoperability problems for COTS distributed simulation can be discovered

    Short-Interval Cortical Inhibition and Intracortical Facilitation during Submaximal Voluntary Contractions Changes with Fatigue

    Get PDF
    This study determined whether short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) change during a sustained submaximal isometric contraction. On 2 days, 12 participants (6 men, 6 women) performed brief (7-s) elbow flexor contractions before and after a 10-min fatiguing contraction; all contractions were performed at the level of integrated electromyographic activity (EMG) which produced 25 % maximal unfatigued torque. During the brief 7-s and 10-min submaximal contractions, single (test) and paired (conditioning–test) transcranial magnetic stimuli were applied over the motor cortex (5 s apart) to elicit motor-evoked potentials (MEPs) in biceps brachii. SICI and ICF were elicited on separate days, with a conditioning–test interstimulus interval of 2.5 and 15 ms, respectively. On both days, integrated EMG remained constant while torque fell during the sustained contraction by ~51.5 % from control contractions, perceived effort increased threefold, and MVC declined by 21–22 %. For SICI, the conditioned MEP during control contractions (74.1 ± 2.5 % of unconditioned MEP) increased (less inhibition) during the sustained contraction (last 2.5 min: 86.0 ± 5.1 %; P \u3c 0.05). It remained elevated in recovery contractions at 2 min (82.0 ± 3.8 %; P \u3c 0.05) and returned toward control at 7-min recovery (76.3 ± 3.2 %). ICF during control contractions (conditioned MEP 129.7 ± 4.8 % of unconditioned MEP) decreased (less facilitation) during the sustained contraction (last 2.5 min: 107.6 ± 6.8 %; P \u3c 0.05) and recovered to 122.8 ± 4.3 % during contractions after 2 min of recovery. Both intracortical inhibitory and facilitatory circuits become less excitable with fatigue when assessed during voluntary activity, but their different time courses of recovery suggest different mechanisms for the fatigue-related changes of SICI and ICF
    corecore