11,889 research outputs found

    Measuring the Effects of Artificial Viscosity in SPH Simulations of Rotating Fluid Flows

    Full text link
    A commonly cited drawback of SPH is the introduction of spurious shear viscosity by the artificial viscosity term in situations involving rotation. Existing approaches for quantifying its effect include approximate analytic formulae and disc-averaged be- haviour in specific ring-spreading simulations, based on the kinematic effects produced by the artificial viscosity. These methods have disadvantages, in that they typically are applicable to a very small range of physical scenarios, have a large number of simplifying assumptions, and often are tied to specific SPH formulations which do not include corrective (e.g., Balsara) or time-dependent viscosity terms. In this study we have developed a simple, generally applicable and practical technique for evaluating the local effect of artificial viscosity directly from the creation of specific entropy for each SPH particle. This local approach is simple and quick to implement, and it al- lows a detailed characterization of viscous effects as a function of position. Several advantages of this method are discussed, including its ease in evaluation, its greater accuracy and its broad applicability. In order to compare this new method with ex- isting ones, simple disc flow examples are used. Even in these basic cases, the very roughly approximate nature of the previous methods is shown. Our local method pro- vides a detailed description of the effects of the artificial viscosity throughout the disc, even for extended examples which implement Balsara corrections. As a further use of this approach, explicit dependencies of the effective viscosity in terms of SPH and flow parameters are estimated from the example cases. In an appendix, a method for the initial placement of SPH particles is discussed which is very effective in reducing numerical fluctuations.Comment: 15 pages, 9 figures, resubmitted to MNRA

    Zero temperature black holes in semiclassical gravity

    Full text link
    The semiclassical Einstein equations are solved to first order in ϵ=/M2\epsilon = \hbar/M^2 for the case of an extreme or nearly extreme Reissner-Nordstr\"{o}m black hole perturbed by the vacuum stress-energy of quantized free fields. It is shown that, for realistic fields of spin 0, 1/2, or 1, any zero temperature black hole solution to the equations must have an event horizon at rh<Qr_h < |Q|, with QQ the charge of the black hole. It is further shown that no black hole solutions with rh<Qr_h < |Q| can be obtained by solving the semiclassical Einstein equations perturbatively.Comment: 7 pages, to appear in the Proceedings of the Ninth Marcel Grossmann Meeting, change in titl

    Reconciling transport models across scales: the role of volume exclusion

    Get PDF
    Diffusive transport is a universal phenomenon, throughout both biological and physical sciences, and models of diffusion are routinely used to interrogate diffusion-driven processes. However, most models neglect to take into account the role of volume exclusion, which can significantly alter diffusive transport, particularly within biological systems where the diffusing particles might occupy a significant fraction of the available space. In this work we use a random walk approach to provide a means to reconcile models that incorporate crowding effects on different spatial scales. Our work demonstrates that coarse-grained models incorporating simplified descriptions of excluded volume can be used in many circumstances, but that care must be taken in pushing the coarse-graining process too far

    Depletion of atmospheric nitrate and chloride as a consequence of the Toba Volcanic Eruption

    Get PDF
    Continuous measurements of SO42− and electrical conductivity (ECM) along the GISP2 ice core record the Toba mega‐eruption at a depth 2590.95 to 2091.25 m (71,000±5000 years ago). Major chemical species were analyzed at a resolution of 1 cm per sample for this section. An ∼6‐year long period with extremely high volcanic SO42− coincident with a 94% depletion of nitrate and 63% depletion of chloride is observed at the depth of the Toba horizon. Such a reduction of chloride in a volcanic layer preserved in an ice core has not been observed in any previous studies. The nearly complete depletion of nitrate (to 5 ppb) encountered at the Toba level is the lowest value in the entire ∼250,000 years of the GISP2 ice core record. We propose possible mechanisms to explain the depletion of nitrate and chloride resulting from this mega‐eruption

    Gauge Invariant Effective Stress-Energy Tensors for Gravitational Waves

    Get PDF
    It is shown that if a generalized definition of gauge invariance is used, gauge invariant effective stress-energy tensors for gravitational waves and other gravitational perturbations can be defined in a much larger variety of circumstances than has previously been possible. In particular it is no longer necessary to average the stress-energy tensor over a region of spacetime which is larger in scale than the wavelengths of the waves and it is no longer necessary to restrict attention to high frequency gravitational waves.Comment: 11 pages, RevTe

    Using the Man9(GlcNAc)2 – DC-SIGN pairing to probe specificity in photochemical immobilization

    Get PDF
    We demonstrate the expected preference of an immobilised oligosaccharide Man(9)(GlcNAc)(2) upon a 96-well photochemical array, for its known receptor, the cell-surface lectin Dendritic Cell-Specific ICAM3 Grabbing Nonintegrin (DC-SIGN) when compared to immobilised competing monosaccharides

    FMRI Clustering and False Positive Rates

    Full text link
    Recently, Eklund et al. (2016) analyzed clustering methods in standard FMRI packages: AFNI (which we maintain), FSL, and SPM [1]. They claimed: 1) false positive rates (FPRs) in traditional approaches are greatly inflated, questioning the validity of "countless published fMRI studies"; 2) nonparametric methods produce valid, but slightly conservative, FPRs; 3) a common flawed assumption is that the spatial autocorrelation function (ACF) of FMRI noise is Gaussian-shaped; and 4) a 15-year-old bug in AFNI's 3dClustSim significantly contributed to producing "particularly high" FPRs compared to other software. We repeated simulations from [1] (Beijing-Zang data [2], see [3]), and comment on each point briefly.Comment: 3 pages, 1 figure. A Letter accepted in PNA
    corecore