3,249 research outputs found

    Real-time measurement of pelvis and trunk kinematics during treadmill locomotion using a low-cost depth-sensing camera: A concurrent validity study

    Get PDF
    There is currently no suitable kinematic system for a large-scale prospective trial assessing risk factors of musculoskeletal disorders. A practical kinematic system is described which involves the use of a single low-cost depth-sensing camera for the real-time measurement of 3-dimensional linear and angular pelvic and trunk range-of-movement (ROM). The method is based on the creation and processing of dynamic point clouds taken from the posterior surface of the pelvis and trunk. Nine healthy participants performed 3 trials of treadmill locomotion when walking at self-selected speed (3.6-5.6 km/h), running at 70% (10.9-14.0 km/h) and 90% of maximal speed (14.0-18.0 km/h). Stride-by-stride linear and angular ROM data were captured concurrently using the single depth-sensing camera running at 30Hz (KinectTM for Windows, Microsoft, USA) and a six-camera motion capture system at 100Hz (Vicon MX13, Vicon Motion Systems, United Kingdom). Within subject correlation coefficients between the practical and criterion method ranged from very large to nearly perfect (r = 0.87–1.00) for the linear ROM. Correlation coefficients for the angular ROM ranged from moderate to very large (r = 0.41–0.80). The limits of agreement between the two systems for linear movements was ≀ 9.9 mm at all velocities of gait and ≀ 4.6 degrees at all velocities of gait. The single camera system using depth-sensing technology is capable of capturing linear pelvic and trunk ROM during treadmill locomotion with reasonable precision when compared to the criterion method. Further improvements to the measurement of angles and validation across a wider population are recommended

    Vacancies, disorder-induced smearing of the electronic structure, and its implications for the superconductivity of anti-perovskite MgC0.93_{0.93}Ni2.85_{2.85}

    Get PDF
    The anti-perovskite superconductor MgC0.93_{0.93}Ni2.85_{2.85} was studied using high-resolution x-ray Compton scattering combined with electronic structure calculations. Compton scattering measurements were used to determine experimentally a Fermi surface that showed good agreement with that of our supercell calculations, establishing the presence of the predicted hole and electron Fermi surface sheets. Our calculations indicate that the Fermi surface is smeared by the disorder due to the presence of vacancies on the C and Ni sites, but does not drastically change shape. The 20\% reduction in the Fermi level density-of-states would lead to a significant (∌70%\sim 70\%) suppression of the superconducting TcT_c for pair-forming electron-phonon coupling. However, we ascribe the observed much smaller TcT_c reduction at our composition (compared to the stoichiometric compound) to the suppression of pair-breaking spin fluctuations.Comment: 11 pages, 3 figure

    The influence of different Cardan sequences on three-dimensional cycling kinematics

    Get PDF
    Purpose. Three-dimensional (3-D) kinematics are widely utilized to quantify movement in cycling analyses. Three-dimensional angular kinematics are obtained using the Euler/Cardan technique, however, Cardan angles are influenced by their ordered sequence and may affect the resultant angular parameters. An XYZ sequence of rotations is currently recommended, although this technique may not always be appropriate when coronal and transverse plane angles are quantified. This study aimed to determine the influence of the six available Cardan sequences on 3-D lower extremity kinematics during cycling. Methods. Kinematic information was obtained from twelve cyclists using an optoelectronic 3-D motion capture system operating at 250 Hz. Repeated measures ANOVAs were used to compare the kinematic parameters obtained using the six Cardan sequences, and intraclass correlations were employed to detect the presence of crosstalk across planes. Results. The results show that discrete kinematic parameters in the sagittal, coronal and transverse planes were significantly greater when using the YXZ and ZXY sequences. It was also observed that these sequences were associated with the strongest correlations from the sagittal plane and also exhibited evidence of gimbal lock. Conclusions. The results suggest that the accurate representation of 3-D kinematics during cycling should continue utilizing the XYZ sequence and avoid the use of the YXZ and ZXY sequences

    Shaped nozzles for cryogenic buffer gas beam sources

    Get PDF
    Cryogenic buffer gas beams are important sources of cold molecules. In this work we explore the use of a converging-diverging nozzle with a buffer-gas beam. We find that, under appropriate circumstances, the use of a nozzle can produce a beam with improved collimation, lower transverse temperatures, and higher fluxes per solid angle

    The Reliability of Electromyographic Normalization Methods for Cycling Analyses

    Get PDF
    Electromyography (EMG) is normalized in relation to a reference maximum voluntary contraction (MVC) value. Different normalization techniques are available but the most reliable method for cycling movements is unknown. This study investigated the reliability of different normalization techniques for cycling analyses. Twenty‐five male cyclists (age 24.13 ± 2.79 years, body height 176.22 ± 4.87 cm and body mass 67.23 ± 4.19 kg, BMI = 21.70 ± 2.60 kg∙m‐1) performed different normalization procedures on two occasions, within the same testing session. The rectus femoris, biceps femoris, gastrocnemius and tibialis anterior muscles were examined. Participants performed isometric normalizations (IMVC) using an isokinetic dynamometer. Five minutes of submaximal cycling (180 W) were also undertaken, allowing the mean (DMA) and peak (PDA) activation from each muscle to serve as reference values. Finally, a 10 s cycling sprint (MxDA) trial was undertaken and the highest activation from each muscle was used as the reference value. Differences between reference EMG amplitude, as a function of normalization technique and time, were examined using repeated measures ANOVAs. The test‐retest reliability of each technique was also examined using linear regression, intraclass correlations and Cronbach’s alpha. The results showed that EMG amplitude differed significantly between normalization techniques for all muscles, with the IMVC and MxDA methods demonstrating the highest amplitudes. The highest levels of reliability were observed for the PDA technique for all muscles; therefore, our results support the utilization of this method for cycling analyses

    Do physicians do as they say? The case of mammography

    Get PDF
    OBJECTIVE: To assess the utility of survey-based physician policy in predicting actual mammography ordering behavior, as measured by medical record abstraction. DESIGN: Cross-sectional survey of practicing community physicians. Responses were correlated with data abstracted from the medical records of patients in the practices of the participating physicians. PARTICIPANTS: Family and general practitioners in Washington State. Medical records of female patients aged 40 to 80 years provided data on actual mammography performance. MAIN OUTCOME MEASURES: The proportions of female patients aged 40 to 49 and 50 to 80 years who had received a screening mammogram within the previous 2 years. RESULTS: Of the more than 100 potential predictors available, only 4 were significantly associated with screening rates for women younger than 50 years and only 3 were associated with screening rates for older women. Regression models explained only 21% to 25% of the variance in screening rates. Physician estimates of screening rates were poorly correlated with actual screening rates. CONCLUSIONS: Practicing physicians do not know how well they screen their patients using mammography. Extensive survey data, including direct estimates of behavior, demographics, policy measures, and case scenario responses, were of limited use in predicting actual screening rates. Our results underscore the importance of using data rather than proxy measures to study physician performance

    Magnetic frustration, short-range correlations and the role of the paramagnetic Fermi surface of PdCrO<sub>2</sub>

    Get PDF
    Frustrated interactions exist throughout nature, with examples ranging from protein folding through to frustrated magnetic interactions. Whilst magnetic frustration is observed in numerous electrically insulating systems, in metals it is a rare phenomenon. The interplay of itinerant conduction electrons mediating interactions between localised magnetic moments with strong spin-orbit coupling is likely fundamental to these systems. Therefore, knowledge of the precise shape and topology of the Fermi surface is important in any explanation of the magnetic behaviour. PdCrO2, a frustrated metallic magnet, offers the opportunity to examine the relationship between magnetic frustration, short-range magnetic order and Fermi surface topology. By mapping the short-range order in reciprocal space and experimentally determining the electronic structure, we have identified the dual role played by the Cr electrons in which the itinerant ones on the nested paramagnetic Fermi surface mediate the frustrated magnetic interactions between local moments
    • 

    corecore