149,160 research outputs found

    Use of precision time and time interval (PTTI)

    Get PDF
    A review of range time synchronization methods are discussed as an important aspect of range operations. The overall capabilities of various missile ranges to determine precise time of day by synchronizing to available references and applying this time point to instrumentation for time interval measurements are described

    Monte Carlo configuration interaction applied to multipole moments, ionisation energies and electron affinities

    Get PDF
    The method of Monte Carlo configuration interaction (MCCI) [1,2] is applied to the calculation of multipole moments. We look at the ground and excited state dipole moments in carbon monoxide. We then consider the dipole of NO, the quadrupole of the nitrogen molecule and of BH. An octupole of methane is also calculated. We consider experimental geometries and also stretched bonds. We show that these non-variational quantities may be found to relatively good accuracy when compared with FCI results, yet using only a small fraction of the full configuration interaction space. MCCI results in the aug-cc-pVDZ basis are seen to generally have reasonably good agreement with experiment. We also investigate the performance of MCCI when applied to ionisation energies and electron affinities of atoms in an aug-cc-pVQZ basis. We compare the MCCI results with full configuration-interaction quantum Monte Carlo [3,4] and `exact' non-relativistic results [3,4]. We show that MCCI could be a useful alternative for the calculation of atomic ionisation energies however electron affinities appear much more challenging for MCCI. Due to the small magnitude of the electron affinities their percentage errors can be high, but with regards to absolute errors MCCI performs similarly for ionisation energies and electron affinities.Comment: 12 pages, 20 figure

    Bounds on quantum communication via Newtonian gravity

    Full text link
    Newtonian gravity yields specific observable consequences, the most striking of which is the emergence of a 1/r21/r^2 force. In so far as communication can arise via such interactions between distant particles, we can ask what would be expected for a theory of gravity that only allows classical communication. Many heuristic suggestions for gravity-induced decoherence have this restriction implicitly or explicitly in their construction. Here we show that communication via a 1/r21/r^2 force has a minimum noise induced in the system when the communication cannot convey quantum information, in a continuous time analogue to Bell's inequalities. Our derived noise bounds provide tight constraints from current experimental results on any theory of gravity that does not allow quantum communication.Comment: 13 pages, 1 figur

    Electron spin decoherence of single Nitrogen-Vacancy defects in diamond

    Full text link
    We present a theoretical analysis of the electron spin decoherence in single Nitrogen-Vacancy defects in ultra-pure diamond. The electron spin decoherence is due to the interactions with Carbon-13 nuclear spins in the diamond lattice. Our approach takes advantage of the low concentration (1.1%) of Carbon-13 and their random distribution in the diamond lattice by an algorithmic aggregation of spins into small, strongly interacting groups. By making use of this \emph{disjoint cluster} approach, we demonstrate a possibility of non-trival dynamics of the electron spin that can not be described by a single time constant. This dependance is caused by a strong coupling between the electron and few nuclei and results, in particular, in a substantial echo signal even at microsecond time scales. Our results are in good agreement with recent experimental observations

    Fast and robust quantum computation with ionic Wigner crystals

    Full text link
    We present a detailed analysis of the modulated-carrier quantum phase gate implemented with Wigner crystals of ions confined in Penning traps. We elaborate on a recent scheme, proposed by two of the authors, to engineer two-body interactions between ions in such crystals. We analyze for the first time the situation in which the cyclotron (w_c) and the crystal rotation (w_r) frequencies do not fulfill the condition w_c=2w_r. It is shown that even in the presence of the magnetic field in the rotating frame the many-body (classical) Hamiltonian describing small oscillations from the ion equilibrium positions can be recast in canonical form. As a consequence, we are able to demonstrate that fast and robust two-qubit gates are achievable within the current experimental limitations. Moreover, we describe a realization of the state-dependent sign-changing dipole forces needed to realize the investigated quantum computing scheme.Comment: 14 pages, 11 figures, published versio

    Primary reaction control system/remote manipulator system interaction with loaded arm. Space shuttle engineering and operations support

    Get PDF
    A study of the interaction between the orbiter primary reaction control system (PRCS) and the remote manipulator system (RMS) with a loaded arm is documented. This analysis was performed with the Payload Deployment and Retrieval Systems Simulation (PDRSS) program with the passive arm bending option. The passive-arm model simulates the arm as massless elastic links with locked joints. The study was divided into two parts. The first part was the evaluation of the response of the arm to step inputs (i.e. constant jet torques) about each of the orbiter body axes. The second part of the study was the evaluation of the response of the arm to minimum impulse primary RCS jet firings with both single pulse and pulse train inputs

    The CHIME graduate programme in health informatics

    Get PDF
    In 1999 University College London inaugurated a programme of graduate part-time Health Informatics courses to support the UK National Health Service?s Information for Health strategy. The programme has attracted students from across the UK and abroad, with a diverse range of backgrounds and skills and has proved a challenging and rewarding experience for students and tutors alike. The modular programme aims to provide a thorough grounding in the theory and practice of Health Informatics and addresses important application areas. The guiding principle is that Health Informatics graduates need to understand computers and programming but that, since the majority are not going to become programmers, programming methods should not dominate the curriculum.In the taught phase of the programme students attend college for 3 days a month and complete an assignment each month, based on home study. Students may graduate with a certificate or diploma, or go on to tackle a dissertation leading to an MSc. Research projects have included a patient record system based on speech input, a mathematical model for illustrating to patients the risks associated with smoking, an analysis of Trust staff's preparedness for Information for Health and a patient information leaflet giving advice about drug related information on the Web. As we move towards our fifth intake of students, we are in the process of evaluating our programme and carrying out a follow up study of our graduates? subsequent career pathways
    corecore