5,908 research outputs found

    An Examination of Conflicting Findings Between Job Satisfaction and Absenteeism: A Meta Analysis

    Get PDF
    This study, which applied meta-analytic procedures, found a significant negative relationship between certain facets of job satisfaction and absenteeism. Findings suggest that sampling errors, scale inadequacies, and the use of different measures of job satisfaction and absence are the reasons for inconsistencies in previous empirical research that examined the relationship between job satisfaction and absenteeism

    Comparative study of CXC chemokines modulation in brown trout (Salmo trutta) following infection with a bacterial or viral pathogen

    Get PDF
    Acknowledgements We would like to acknowledge Richard Paley, Tom Hill and Georgina Rimmer for their collaboration during brown trout infection challenges in CEFAS-Weymouth biosecurity facilities. Bartolomeo Gorgoglione, Stephen W. Feist and Nick G. H. Taylor were supported by a DEFRA grant (F1198).Peer reviewedPostprin

    Recreation of the terminal events in physiological integrin activation.

    Get PDF
    Increased affinity of integrins for the extracellular matrix (activation) regulates cell adhesion and migration, extracellular matrix assembly, and mechanotransduction. Major uncertainties concern the sufficiency of talin for activation, whether conformational change without clustering leads to activation, and whether mechanical force is required for molecular extension. Here, we reconstructed physiological integrin activation in vitro and used cellular, biochemical, biophysical, and ultrastructural analyses to show that talin binding is sufficient to activate integrin alphaIIbbeta3. Furthermore, we synthesized nanodiscs, each bearing a single lipid-embedded integrin, and used them to show that talin activates unclustered integrins leading to molecular extension in the absence of force or other membrane proteins. Thus, we provide the first proof that talin binding is sufficient to activate and extend membrane-embedded integrin alphaIIbbeta3, thereby resolving numerous controversies and enabling molecular analysis of reconstructed integrin signaling

    Effects of instructional set variations on the Bichrome Test and comparison of the continuous and flash phoria techniques

    Get PDF
    Effects of instructional set variations on the Bichrome Test and comparison of the continuous and flash phoria technique

    Personnel/Human Resources Management Issues Between 1927-1981: A Replication

    Get PDF
    This study represents a historical analysis of personnel/human resource topics/issues of the last 55 years. The contents of 6,412 articles published in two journals are categorized and examined Issues that have either dominated the journals or have been neglected are identified, and the importance and origination of these issues are clarified by placing them in a historical context Methodological issues of this analysis are discusse

    The Spindle Assembly Checkpoint

    Get PDF
    During mitosis and meiosis, the spindle assembly checkpoint acts to maintain genome stability by delaying cell division until accurate chromosome segregation can be guaranteed. Accuracy requires that chromosomes become correctly attached to the microtubule spindle apparatus via their kinetochores. When not correctly attached to the spindle, kinetochores activate the spindle assembly checkpoint network, which in turn blocks cell cycle progression. Once all kinetochores become stably attached to the spindle, the checkpoint is inactivated, which alleviates the cell cycle block and thus allows chromosome segregation and cell division to proceed. Here we review recent progress in our understanding of how the checkpoint signal is generated, how it blocks cell cycle progression and how it is extinguished

    The Need For Speed: Rapid Refitting Techniques for Bayesian Spectral Characterization of the Gravitational Wave Background Using PTAs

    Full text link
    Current pulsar timing array (PTA) techniques for characterizing the spectrum of a nanohertz-frequency stochastic gravitational-wave background (SGWB) begin at the stage of timing data. This can be slow and memory intensive with computational scaling that will worsen PTA analysis times as more pulsars and observations are added. Given recent evidence for a common-spectrum process in PTA data sets and the need to understand present and future PTA capabilities to characterize the SGWB through large-scale simulations, we have developed efficient and rapid approaches that operate on intermediate SGWB analysis products. These methods refit SGWB spectral models to previously-computed Bayesian posterior estimations of the timing power spectra. We test our new methods on simulated PTA data sets and the NANOGrav 12.512.5-year data set, where in the latter our refit posterior achieves a Hellinger distance from the current full production-level pipeline that is â‰Č0.1\lesssim 0.1. Our methods are ∌102\sim10^2--10410^4 times faster than the production-level likelihood and scale sub-linearly as a PTA is expanded with new pulsars or observations. Our methods also demonstrate that SGWB spectral characterization in PTA data sets is driven by the longest-timed pulsars with the best-measured power spectral densities which is not necessarily the case for SGWB detection that is predicated on correlating many pulsars. Indeed, the common-process spectral properties found in the NANOGrav 12.512.5-year data set are given by analyzing only the ∌10\sim10 longest-timed pulsars out of the full 4545 pulsar array, and we find that the ``shallowing'' of the common-process power-law model occurs when gravitational-wave frequencies higher than ∌50\sim 50~nanohertz are included. The implementation of our methods is openly available as a software suite to allow fast and flexible PTA SGWB spectral characterization and model selection.Comment: 19 pages, 12 figures. Submitting to Physical Review

    Adaptive foveated single-pixel imaging with dynamic super-sampling

    Get PDF
    As an alternative to conventional multi-pixel cameras, single-pixel cameras enable images to be recorded using a single detector that measures the correlations between the scene and a set of patterns. However, to fully sample a scene in this way requires at least the same number of correlation measurements as there are pixels in the reconstructed image. Therefore single-pixel imaging systems typically exhibit low frame-rates. To mitigate this, a range of compressive sensing techniques have been developed which rely on a priori knowledge of the scene to reconstruct images from an under-sampled set of measurements. In this work we take a different approach and adopt a strategy inspired by the foveated vision systems found in the animal kingdom - a framework that exploits the spatio-temporal redundancy present in many dynamic scenes. In our single-pixel imaging system a high-resolution foveal region follows motion within the scene, but unlike a simple zoom, every frame delivers new spatial information from across the entire field-of-view. Using this approach we demonstrate a four-fold reduction in the time taken to record the detail of rapidly evolving features, whilst simultaneously accumulating detail of more slowly evolving regions over several consecutive frames. This tiered super-sampling technique enables the reconstruction of video streams in which both the resolution and the effective exposure-time spatially vary and adapt dynamically in response to the evolution of the scene. The methods described here can complement existing compressive sensing approaches and may be applied to enhance a variety of computational imagers that rely on sequential correlation measurements.Comment: 13 pages, 5 figure
    • 

    corecore