7,563 research outputs found
A business case for electric power distributors using simulation: Investigating the combined use of the strategies of feed-in-tariffs, distributed generation, time of use rates, and efficiency
Numerous references found in the academic and trade literature discuss the availability and applicability of certain technologies and policies to allow the U.S. electrical grid to address the future challenges of continued growth and aging infrastructure. However, the existing utility companies seem reluctant to adopt these new measures. This thesis will describe some of these strategies and develop a model using Stella system dynamics software that will explore the potential financial impact to the utilities from using these strategies in combination. The four strategies to be investigated are feed in tariffs, time of use rates, distributed generation, and demand-side energy efficiency . There are other strategies that could be considered such as Renewable Portfolio Standards, Net Metering, Critical Peak Pricing, and Renewable Energy Tax Credits. These other strategies are either similar in implementation to the four discussed in this paper or have been shown to not have lasting affect on the utility industry\u27s bottom line. For this reason, the four listed above have been chosen. From the research and the test case data used in this paper, the following findings were observed: Distributed Generation will most likely not be implemented without some true incentive to the owner and without a policy such as Feed-In Tariffs. Energy Efficiency practices can significantly reduce electrical consumption. Specific technologies have very attractive payback or return on investment and others are not practical when only taking into account ROI measurements. Peak Shifting or Peak shaving can have significant effect on the utility\u27s profit but has no effect on the consumer\u27s electricity bill. Time of Use rates have very different effects on the utility. Depending upon the cost structure of their generation and the nature of its customer load, the TOU rate can significantly reduce the profit of the utility even without Peak Shifting. The biggest positive impact for society as a whole would be a policy that lowers electrical consumption, decreases the release of greenhouse gases, and allows the utility to remain a viable business. The combination of strategies that offers this impact would be the use of Peak Shifting with no TOU rates, demand-side Energy Efficiency, and the implementation of a FIT for photovoltaic generation
CD4+ T-cell responses to Epstein-Barr virus (EBV) latent-cycle antigens and the recognition of EBV-transformed lymphoblastoid cell lines
There is considerable interest in the potential of Epstein-Barr virus (EBV) latent antigen-specific CD4 T cells to act as direct effectors controlling EBV-induced B lymphoproliferations. Such activity would require direct CD4 T-cell recognition of latently infected cells through epitopes derived from endogenously expressed viral proteins and presented on the target cell surface in association with HLA class II molecules. It is therefore important to know how often these conditions are met. Here we provide CD4 epitope maps for four EBV nuclear antigens, EBNA1, -2, -3A, and -3C, and establish CD4 T-cell clones against 12 representative epitopes. For each epitope we identify the relevant HLA class II restricting allele and determine the efficiency with which epitope-specific effectors recognize the autologous EBV-transformed B-lymphoblastoid cell line (LCL). The level of recognition measured by gamma interferon release was consistent among clones to the same epitope but varied between epitopes, with values ranging from 0 to 35% of the maximum seen against the epitope peptide-loaded LCL. These epitope-specific differences, also apparent in short-term cytotoxicity and longer-term outgrowth assays on LCL targets, did not relate to the identity of the source antigen and could not be explained by the different functional avidities of the CD4 clones; rather, they appeared to reflect different levels of epitope display at the LCL surface. Thus, while CD4 T-cell responses are detectable against many epitopes in EBV latent proteins, only a minority of these responses are likely to have therapeutic potential as effectors directly recognizing latently infected target cells
3-D kinematic comparison of treadmill and overground running.
Studies investigating the mechanics of human movement are often conducted using the treadmill. The treadmill is an attractive device for the analysis of human locomotion. Studies comparing overground and treadmill running have analyzed discrete variables, however differences in excursion from footstrike to peak angle and range of motion during stance have yet to be examined. This study aimed to examine the 3-D kinematics of the lower extremities during overground and treadmill locomotion to determine the extent to which the two modalities differ. Twelve participants ran at 4.0m/s in both treadmill and overground conditions. 3-D angular kinematic parameters during the stance phase were collected using an eight camera motion analysis system. Hip, knee and ankle joint kinematics were quantified in the sagittal, coronal and transverse planes, then compared using paired t-tests. Of the parameters analyzed hip flexion at footstrike 12° hip range of motion 17°, peak hip flexion 12.7°, hip transverse plane range of motion 8° peak knee flexion 5° and peak ankle excursion range 6.6°, coronal plane ankle angle at toe-off 6.5° and peak ankle eversion 6.3° were found to be significantly different. These results lead to the conclusion that the mechanics of treadmill locomotion cannot be generalized to overground
ECOREGIONAL DIFFERENCES IN LATE-20TH-CENTURY LAND-USE AND LAND-COVER CHANGE IN THE U.S. NORTHERN GREAT PLAINS
Land-cover and land-use change usually results from a combination of anthropogenic drivers and biophysical conditions found across multiple scales, ranging from parcel to regional levels. A group of four Level III ecoregions located in the u.s. northern Great Plains is used to demonstrate the similarities and differences in land change during nearly a 30-year period (1973-2000) using results from the U.S. Geological Survey\u27s Land Cover Trends project. There were changes to major suites of land-cover; the transitions between agriculture and grassland/shrubland and the transitions among wetland, water, agriculture, and grassland/shrubland were affected by different factors. Anthropogenic drivers affected the land-use tension (or land-use competition) between agriculture and grassland/shrubland land-covers, whereas changes between wetland and water land-covers, and their relationship to agriculture and grassland/shrubland land-covers, were mostly affected by regional weather cycles. More land-use tension between agriculture and grassland/shrubland landcovers occurred in ecoregions with greater amounts of economically marginal cropland. Land-cover change associated with weather variability occurred in ecoregions that had large concentrations of wetlands and water impoundments, such as the Missouri River reservoirs. The Northwestern Glaciated Plains ecoregion had the highest overall estimated percentage of change because it had both land-use tension between agriculture and grassland/shrubland land-covers and wetland-water changes
Photon CT Scanning of Advanced Ceramic Materials
Advanced ceramic materials (e. g. Si3N4, ZrO2, SiC, A12O3) are being developed for high temperature applications in advanced heat engines and high temperature heat recovery systems [1]. Although fracture toughness has been a constant problem, advanced ceramics are now being developed with fracture toughnesses close to those of metals [2]. Small size flaws (10–200 μm), small non-uniformities in density distributions (0.1–2%) present as long-range density gradients, and porous regions which can be seen as localized areas of slightly lower density, are critical in most ceramics. The need to detect these small flaws is causing a significant effort to be devoted towards nondestructive evaluation. Detection of “defects” such as those noted in engineering ceramics has presented problems for conventional non-destructive evaluation methods [3]
High-frequency spinal cord stimulation at 10 kHz for the treatment of painful diabetic neuropathy: design of a multicenter, randomized controlled trial (SENZA-PDN)
Background:
Painful diabetic neuropathy (PDN), a debilitating and progressive chronic pain condition that significantly impacts quality of life, is one of the common complications seen with long-standing diabetes mellitus. Neither pharmacological treatments nor low-frequency spinal cord stimulation (SCS) has provided significant and long-term pain relief for patients with PDN. This study aims to document the value of 10-kHz SCS in addition to conventional medical management (CMM) compared with CMM alone in patients with refractory PDN.
Methods:
In a prospective, multicenter, randomized controlled trial (SENZA-PDN), 216 subjects with PDN will be assigned 1:1 to receive 10-kHz SCS combined with CMM or CMM alone after appropriate institutional review board approvals and followed for 24 months. Key inclusion criteria include (1) symptoms of PDN for at least 12 months, (2) average pain intensity of at least 5 cm—on a 0- to 10-cm visual analog scale (VAS)—in the lower limbs, and (3) an appropriate candidate for SCS. Key exclusion criteria include (1) large or gangrenous ulcers or (2) average pain intensity of at least 3 cm on VAS in the upper limbs or both. Along with pain VAS, neurological assessments, health-related quality of life, sleep quality, and patient satisfaction will be captured. The primary endpoint comparing responder rates (≥50% pain relief) and safety rates between the treatment groups will be assessed at 3 months. Several secondary endpoints will also be reported on.
Discussion:
Enrollment commenced in 2017 and was completed in 2019. This study will help to determine whether 10-kHz SCS improves clinical outcomes and health-related quality of life and is a cost-effective treatment for PDN that is refractory to CMM
- …