126 research outputs found

    The Effects of Offseason Training on Special Olympics Athletes

    Get PDF
    The Effects of Offseason Training on Special Olympics Athletes Tayler Holder, Alex White Department of Health and Human Performance PURPOSE: Many Special Olympics athletes focus on sport specific preseason training and have no fitness programs in the offseason. The purpose of this study was to evaluate the effectiveness of individualized fitness programs on fitness levels of Special Olympics athletes. METHODS: Participants were 3 Special Olympics athletes recruited from specialized exercise programs at the YMCA. Athletes were given an Athlete Pre-Program Survey and participated in field testing to assess their baseline needs. In the field we tested flexibility, strength, balance, and aerobic fitness levels by using the following tests: Back Saver Sit and Reach Test, Apley’s Test, Timed Sit-Stand Test, Partial Sit-up Test, Seated Push-up Test, Eyes Open and Eyes Closed Single Leg Stance, Multidirectional Functional Reach and the Three Minute Walk-Run Test. Based on the baseline assessment athletes were given an individualized exercise program and were retested after six weeks. RESULTS: Our specific intervention focused on balance and aerobic fitness. We measured the greatest post-intervention improvement in these areas. We used the Cohen statistic to calculate the effect size, which measures the strength of the correlation between the intervention program and the recorded improvements. Effect Size is represented as Small (0.1-0.3), Medium (0.3-0.5), or Large (\u3e0.5). A Large Effect Size was calculated for the following tests: Eyes Open Single Leg Stance (L/R), Eyes Closed Single Leg Stance (R), and the Three-Minute Walk/Run Distance. CONCLUSION: From the improvements shown in the brief six week intervention, we found the program to be effective at increasing the fitness levels of our Special Olympic Athletes. We anticipate that there would be more significant improvements in balance, flexibility, strength and aerobic fitness in a longer program

    Metabotropic glutamate receptor 2/3 (mGluR2/3) activation suppresses TRPV1 sensitization in mouse, but not human sensory neurons

    Get PDF
    AbstractThe use of human tissue to validate putative analgesic targets identified in rodents is a promising strategy for improving the historically poor translational record of preclinical pain research. We recently demonstrated that in mouse and human sensory neurons, agonists for metabotropic glutamate receptors 2 and 3 (mGluR2/3) reduce membrane hyperexcitability produced by the inflammatory mediator prostaglandin E2(PGE2). Previous rodent studies indicate that mGluR2/3 can also reduce peripheral sensitization by suppressing inflammation-induced sensitization of TRPV1. Whether this observation similarly translates to human sensory neurons has not yet been tested. We found that activation of mGluR2/3 with the agonist APDC suppressed PGE2-induced sensitization of TRPV1 in mouse, but not human, sensory neurons. We also evaluated sensory neuron expression of the gene transcripts for mGluR2 (Grm2), mGluR3 (Grm3), and TRPV1 (Trpv1). The majority ofTrpv1+mouse and human sensory neurons expressedGrm2and/orGrm3, and in both mice and humans,Grm2was expressed in a greater percentage of sensory neurons thanGrm3. Although we demonstrated a functional difference in the modulation of TRPV1 sensitization by mGluR2/3 activation between mouse and human, there were no species differences in the gene transcript colocalization of mGluR2 or mGluR3 with TRPV1 that might explain this functional difference. Taken together with our previous work, these results suggest that mGluR2/3 activation suppresses only some aspects of human sensory neuron sensitization caused by PGE2. These differences have implications for potential healthy human voluntary studies or clinical trials evaluating the analgesic efficacy of mGluR2/3 agonists or positive allosteric modulators.</jats:p

    Tuning 2D perovskite–graphene layered composite for photocatalysis †

    Get PDF
    The augmentation of photocatalytic activity in layered perovskite oxides via the integration of graphene-like materials presents a promising pathway for the optimization of solar energy conversion. The electron-rich nature of graphene, coupled with its high electron conductivity, functions as an effective photosensitizer, thereby enhancing visible light harvesting. In this investigation, we have, for the first time, assembled ultrathin exfoliated Dion–Jacobson perovskite layers with reduced graphene oxide (rGO) layers, resulting in a high surface area layered nanocomposite, achieved through a tailored electrostatic approach. To further refine the electron properties of the layered perovskite–reduced graphene oxide composites, we have explored the use of various lanthanides as A-site cations in the Dion–Jacobson perovskites, including LaNb2O7 (LNO), PrNb2O7 (PNO), and NdNb2O7 (NNO). The synthesized composites demonstrate exceptional performance in photocatalytic H2 production, with rGO/NNO exhibiting the highest activity, achieving a hydrogen evolution rate (HER) of 835 μmol g−1 under light illumination, attributable to optimal interfacial effects. Our experimental and theoretical analyses indicate that hydrogen production is predominantly influenced by the A-site cation charge density at the materials' interface, as dictated by the charge transfer dynamics. This research potentially contributes to the comprehension and enhancement of photocatalytic processes for applications in solar energy conversion

    Can timely vector control interventions triggered by atypical environmental conditions prevent malaria epidemics? A case-study from Wajir County, Kenya.

    Get PDF
    BACKGROUND: Atypical environmental conditions with drought followed by heavy rainfall and flooding in arid areas in sub-Saharan Africa can lead to explosive epidemics of malaria, which might be prevented through timely vector-control interventions. OBJECTIVES: Wajir County in Northeast Kenya is classified as having seasonal malaria transmission. The aim of this study was to describe in Wajir town the environmental conditions, the scope and timing of vector-control interventions and the associated resulting burden of malaria at two time periods (1996-1998 and 2005-2007). METHODS: This is a cross-sectional descriptive and ecological study using data collected for routine program monitoring and evaluation. RESULTS: In both time periods, there were atypical environmental conditions with drought and malnutrition followed by massive monthly rainfall resulting in flooding and animal/human Rift Valley Fever. In 1998, this was associated with a large and explosive malaria epidemic (weekly incidence rates peaking at 54/1,000 population/week) with vector-control interventions starting over six months after the massive rainfall and when the malaria epidemic was abating. In 2007, vector-control interventions started sooner within about three months after the massive rainfall and no malaria epidemic was recorded with weekly malaria incidence rates never exceeding 0.5 per 1,000 population per week. DISCUSSION AND CONCLUSION: Did timely vector-control interventions in Wajir town prevent a malaria epidemic? In 2007, the neighboring county of Garissa experienced similar climatic events as Wajir, but vector-control interventions started six months after the heavy un-seasonal rainfall and large scale flooding resulted in a malaria epidemic with monthly incidence rates peaking at 40/1,000 population. In conclusion, this study suggests that atypical environmental conditions can herald a malaria outbreak in certain settings. In turn, this should alert responsible stakeholders about the need to act rapidly and preemptively with appropriate and wide-scale vector-control interventions to mitigate the risk

    Misregulation of mitochondria-lysosome contact dynamics in Charcot-Marie-Tooth Type 2B disease Rab7 mutant sensory peripheral neurons

    Get PDF
    Inter-organelle contact sites between mitochondria and lysosomes mediate the crosstalk and bidirectional regulation of their dynamics in health and disease. However, mitochondria-lysosome contact sites and their misregulation have not been investigated in peripheral sensory neurons. Charcot-Marie-Tooth type 2B disease is an autosomal dominant axonal neuropathy affecting peripheral sensory neurons caused by mutations in the GTPase Rab7. Using live super-resolution and confocal time-lapse microscopy, we showed that mitochondria-lysosome contact sites dynamically form in the soma and axons of peripheral sensory neurons. Interestingly, Charcot-Marie-Tooth type 2B mutant Rab7 led to prolonged mitochondria-lysosome contact site tethering preferentially in the axons of peripheral sensory neurons, due to impaired Rab7 GTP hydrolysis-mediated contact site untethering. We further generated a Charcot-Marie-Tooth type 2B mutant Rab7 knock-in mouse model which exhibited prolonged axonal mitochondria-lysosome contact site tethering and defective downstream axonal mitochondrial dynamics due to impaired Rab7 GTP hydrolysis as well as fragmented mitochondria in the axon of the sciatic nerve. Importantly, mutant Rab7 mice further demonstrated preferential sensory behavioral abnormalities and neuropathy, highlighting an important role for mutant Rab7 in driving degeneration of peripheral sensory neurons. Together, this study identifies an important role for mitochondria-lysosome contact sites in the pathogenesis of peripheral neuropathy
    • …
    corecore