36 research outputs found

    How Cervical Reconstruction Surgery Affects Global Spinal Alignment.

    Get PDF
    BACKGROUND:There have been no reports describing how cervical reconstruction surgery affects global spinal alignment (GSA). OBJECTIVE:To elucidate the effects of cervical reconstruction for GSA through a retrospective multicenter study. METHODS:Seventy-eight patients who underwent cervical reconstruction surgery for cervical kyphosis were divided into a Head-balanced group (n = 42) and a Trunk-balanced group (n = 36) according to the values of the C7 plumb line (PL). We also divided the patients into a cervical sagittal balanced group (CSB group, n = 18) and a cervical sagittal imbalanced group (CSI group, n = 60) based on the C2 PL-C7 PL distance. Various sagittal Cobb angles and the sagittal vertical axes were measured before and after surgery. RESULTS:Cervical alignment was improved to achieve occiput-trunk concordance (the distance between the center of gravity [COG] PL, which is considered the virtual gravity line of the entire body, and C7 PL < 30 mm) despite the location of COG PL and C7PL. A subsequent significant change in thoracolumbar alignment was observed in Head-balanced and CSI groups. However, no such significant change was observed in Trunk-balanced and CSB groups. We observed 1 case of transient and 1 case of residual neurological worsening. CONCLUSION:The primary goal of cervical reconstruction surgery is to achieve occiput-trunk concordance. Once it is achieved, subsequent thoracolumbar alignment changes occur as needed to harmonize GSA. Cervical reconstruction can restore both cervical deformity and GSA. However, surgeons must consider the risks and benefits in such challenging cases

    Results at 24 months from the prospective, randomized, multicenter Investigational Device Exemption trial of ProDisc-C versus anterior cervical discectomy and fusion with 4-year follow-up and continued access patients.

    Get PDF
    BackgroundCervical total disk replacement (TDR) is intended to address pain and preserve motion between vertebral bodies in patients with symptomatic cervical disk disease. Two-year follow-up for the ProDisc-C (Synthes USA Products, LLC, West Chester, Pennsylvania) TDR clinical trial showed non-inferiority versus anterior cervical discectomy and fusion (ACDF), showing superiority in many clinical outcomes. We present the 4-year interim follow-up results.MethodsPatients were randomized (1:1) to ProDisc-C (PDC-R) or ACDF. Patients were assessed preoperatively, and postoperatively at 6 weeks and 3, 6, 12, 18, 24, 36, and 48 months. After the randomized portion, continued access (CA) patients also underwent ProDisc-C implantation, with follow-up visits up to 24 months. Evaluations included Neck Disability Index (NDI), Visual Analog Scale (VAS) for pain/satisfaction, and radiographic and physical/neurologic examinations.ResultsRandomized patients (103 PDC-R and 106 ACDF) and 136 CA patients were treated at 13 sites. VAS pain and NDI score improvements from baseline were significant for all patients (P < .0001) but did not differ among groups. VAS satisfaction was higher at all time points for PDC-R versus ACDF patients (P = .0499 at 48 months). The percentage of patients who responded yes to surgery again was 85.6% at 24 months and 88.9% at 48 months in the PDC-R group, 80.9% at 24 months and 81.0% at 48 months in the ACDF group, and 86.3% at 24 months in the CA group. Five PDC-R patients (48 months) and no CA patients (24 months) had index-level bridging bone. By 48 months, approximately 4-fold more ACDF patients required secondary surgery (3 of 103 PDC-R patients [2.9%] vs 12 of 106 ACDF patients [11.3%], P = .0292). Of these, 6 ACDF patients (5.6%) required procedures at adjacent levels. Three CA patients required secondary procedures (24 months).ConclusionsOur 4-year data support that ProDisc-C TDR and ACDF are viable surgical options for symptomatic cervical disk disease. Although ACDF patients may be at higher risk for additional surgical intervention, patients in both groups show good clinical results at longer-term follow-up

    Quantitative Assessment of the Anatomical Footprint of the C1 Pedicle Relative to the Lateral Mass: A Guide for C1 Lateral Mass Fixation

    Get PDF
    Study Design: Anatomic study. Objectives: To determine the relationship of the anatomical footprint of the C1 pedicle relative to the lateral mass (LM). Methods: Anatomic measurements were made on fresh frozen human cadaveric C1 specimens: pedicle width/height, LM width/height (minimum/maximum), LM depth, distance between LM’s medial aspect and pedicle’s medial border, distance between LM’s lateral aspect to pedicle’s lateral border, distance between pedicle’s inferior aspect and LM’s inferior border, distance between arch’s midline and pedicle’s medial border. The percentage of LM medial to the pedicle and the distance from the center of the LM to the pedicle’s medial wall were calculated. Results: A total of 42 LM were analyzed. The C1 pedicle’s lateral aspect was nearly confluent with the LM’s lateral border. Average pedicle width was 9.0 ± 1.1 mm, and average pedicle height was 5.0 ± 1.1 mm. Average LM width and depth were 17.0 ± 1.6 and 17.2 ± 1.6 mm, respectively. There was 6.9 ± 1.5 mm of bone medial to the medial C1 pedicle, which constituted 41% ± 9% of the LM’s width. The distance from C1 arch’s midline to the medial pedicle was 13.5 ± 2.0 mm. The LM’s center was 1.6 ± 1 mm lateral to the medial pedicle wall. There was on average 3.5 ± 0.6 mm of the LM inferior to the pedicle inferior border. Conclusions: The center of the lateral mass is 1.6 ± 1 mm lateral to the medial wall of the C1 pedicle and approximately 15 mm from the midline. There is 6.9 ± 1.5 mm of bone medial to the medial C1 pedicle. Thus, the medial aspect of C1 pedicle may be used as an anatomic reference for locating the center of the C1 LM for screw fixation

    PRL-3, a Metastasis Associated Tyrosine Phosphatase, Is Involved in FLT3-ITD Signaling and Implicated in Anti-AML Therapy

    Get PDF
    Combination with other small molecule drugs represents a promising strategy to improve therapeutic efficacy of FLT3 inhibitors in the clinic. We demonstrated that combining ABT-869, a FLT3 inhibitor, with SAHA, a HDAC inhibitor, led to synergistic killing of the AML cells with FLT3 mutations and suppression of colony formation. We identified a core gene signature that is uniquely induced by the combination treatment in 2 different leukemia cell lines. Among these, we showed that downregulation of PTP4A3 (PRL-3) played a role in this synergism. PRL-3 is downstream of FLT3 signaling and ectopic expression of PRL-3 conferred therapeutic resistance through upregulation of STAT (signal transducers and activators of transcription) pathway activity and anti-apoptotic Mcl-1 protein. PRL-3 interacts with HDAC4 and SAHA downregulates PRL-3 via a proteasome dependent pathway. In addition, PRL-3 protein was identified in 47% of AML cases, but was absent in myeloid cells in normal bone marrows. Our results suggest such combination therapies may significantly improve the therapeutic efficacy of FLT3 inhibitors. PRL-3 plays a potential pathological role in AML and it might be a useful therapeutic target in AML, and warrant clinical investigation

    Effect of Co-60 gamma-ray irradiation on electrical properties of Ti/Au/GaAs1-xNx Schottky diodes

    Get PDF
    Current-voltage (I-V), capacitance-voltage-frequency (C-V-f) and conductance-voltage-frequency (G/ω-V-f) measurements at room temperature are used to study 50 kGy 60Co γ-ray electrical properties irradiation dependence of Ti/Au/GaAs1−xNx Schottky diodes with 0.2%; 0.4%; 0.8% and 1.2% nitrogen dilution. This γ-ray irradiation induces a permanent damage that has increased ideality factor and series resistance for all samples. It was accompanied by a decrease in Schottky barrier height with nitrogen content up to 0.4%N and remained constant thereafter. Radiation was also found to degrade the reverse leakage current. At high frequency (1 MHz), capacitance and conductance decreased after radiation due to a decrease in net doping concentration. Interface state density and series resistance were determined from C-V-f and G/ω-V-f characteristics using Hill-Coleman methods. Interface states density exponentially decreased with increasing frequency confirming the behavior of interface traps response to ac signal. Series resistance increases after irradiation is attributed to carrier's removal effect and mobility degradation. It has two peaks in the accumulation and inversion region for some diodes (0.4%N, 0.8%N). γ-ray irradiation produced traps levels and recombination centers that reduce relaxation time. An increase in %N content can impede irradiation damage with even some compensation when the percent of diluted nitrogen is high (1.2%N)
    corecore