603 research outputs found

    Scanner Invariant Representations for Diffusion MRI Harmonization

    Get PDF
    Purpose: In the present work we describe the correction of diffusion-weighted MRI for site and scanner biases using a novel method based on invariant representation. Theory and Methods: Pooled imaging data from multiple sources are subject to variation between the sources. Correcting for these biases has become very important as imaging studies increase in size and multi-site cases become more common. We propose learning an intermediate representation invariant to site/protocol variables, a technique adapted from information theory-based algorithmic fairness; by leveraging the data processing inequality, such a representation can then be used to create an image reconstruction that is uninformative of its original source, yet still faithful to underlying structures. To implement this, we use a deep learning method based on variational auto-encoders (VAE) to construct scanner invariant encodings of the imaging data. Results: To evaluate our method, we use training data from the 2018 MICCAI Computational Diffusion MRI (CDMRI) Challenge Harmonization dataset. Our proposed method shows improvements on independent test data relative to a recently published baseline method on each subtask, mapping data from three different scanning contexts to and from one separate target scanning context. Conclusion: As imaging studies continue to grow, the use of pooled multi-site imaging will similarly increase. Invariant representation presents a strong candidate for the harmonization of these data

    Impact of b-value on estimates of apparent fibre density

    Get PDF
    Recent advances in diffusion magnetic resonance imaging (dMRI) analysis techniques have improved our understanding of fibre-specific variations in white matter microstructure. Increasingly, studies are adopting multi-shell dMRI acquisitions to improve the robustness of dMRI-based inferences. However, the impact of b-value choice on the estimation of dMRI measures such as apparent fibre density (AFD) derived from spherical deconvolution is not known. Here, we investigate the impact of b-value sampling scheme on estimates of AFD. First, we performed simulations to assess the correspondence between AFD and simulated intra-axonal signal fraction across multiple b-value sampling schemes. We then studied the impact of sampling scheme on the relationship between AFD and age in a developmental population (n=78) aged 8-18 (mean=12.4, SD=2.9 years) using hierarchical clustering and whole brain fixel-based analyses. Multi-shell dMRI data were collected at 3.0T using ultra-strong gradients (300 mT/m), using 6 diffusion-weighted shells ranging from 0 – 6000 s/mm2. Simulations revealed that the correspondence between estimated AFD and simulated intra-axonal signal fraction was improved with high b-value shells due to increased suppression of the extra-axonal signal. These results were supported by in vivo data, as sensitivity to developmental age-relationships was improved with increasing b-value (b=6000 s/mm2, median R2 = .34; b=4000 s/mm2, median R2 = .29; b=2400 s/mm2, median R2 = .21; b=1200 s/mm2, median R2 = .17) in a tract-specific fashion. Overall, estimates of AFD and age-related microstructural development were better characterised at high diffusion-weightings due to improved correspondence with intra-axonal properties

    Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI

    Get PDF
    The key component of a microstructural diffusion MRI 'super-scanner' is a dedicated high-strength gradient system that enables stronger diffusion weightings per unit time compared to conventional gradient designs. This can, in turn, drastically shorten the time needed for diffusion encoding, increase the signal-to-noise ratio, and facilitate measurements at shorter diffusion times. This review, written from the perspective of the UK National Facility for In Vivo MR Imaging of Human Tissue Microstructure, an initiative to establish a shared 300 mT/m-gradient facility amongst the microstructural imaging community, describes ten advantages of ultra-strong gradients for microstructural imaging. Specifically, we will discuss how the increase of the accessible measurement space compared to a lower-gradient systems (in terms of Δ, b-value, and TE) can accelerate developments in the areas of 1) axon diameter distribution mapping; 2) microstructural parameter estimation; 3) mapping micro-vs macroscopic anisotropy features with gradient waveforms beyond a single pair of pulsed-gradients; 4) multi-contrast experiments, e.g. diffusion-relaxometry; 5) tractography and high-resolution imaging in vivo and 6) post mortem; 7) diffusion-weighted spectroscopy of metabolites other than water; 8) tumour characterisation; 9) functional diffusion MRI; and 10) quality enhancement of images acquired on lower-gradient systems. We finally discuss practical barriers in the use of ultra-strong gradients, and provide an outlook on the next generation of 'super-scanners'

    Encoding conformance checking artefacts in SAT

    Get PDF
    Conformance checking strongly relies on the computation of artefacts, which enable reasoning on the relation between observed and modeled behavior. This paper shows how important conformance artefacts like alignments, anti-alignments or even multi-alignments, defined over the edit distance, can be computed by encoding the problem as a SAT instance. From a general perspective, the work advocates for a unified family of techniques that can compute conformance artefacts in the same way. The prototype implementation of the techniques presented in this paper show capabilities for dealing with some of the current benchmarks, and potential for the near future when optimizations similar to the ones in the literature are incorporated.Peer ReviewedPostprint (author's final draft

    Encoding conformance checking artefacts in SAT

    Get PDF
    Conformance checking strongly relies on the computation of artefacts, which enable reasoning on the relation between observed and modeled behavior. This paper shows how important conformance artefacts like alignments, anti-alignments or even multi-alignments, defined over the edit distance, can be computed by encoding the problem as a SAT instance. From a general perspective, the work advocates for a unified family of techniques that can compute conformance artefacts in the same way. The prototype implementation of the techniques presented in this paper show capabilities for dealing with some of the current benchmarks, and potential for the near future when optimizations similar to the ones in the literature are incorporated.Peer ReviewedPostprint (author's final draft

    Creating spaces: testimonio, impossible knowledge, and academe

    Get PDF
    Postprint upload.This article examines what it means to engage seriously with speech and writing events, such as testimonio, articulated by people whose theoretical base lies primarily in experience outside the walls of academe. I argue that we dismiss such unfamiliar scholarship to the detriment of all involved. If we are truly committed to learning, then we must expose ourselves to language forms and cultural norms that are different from those with which we are familiar. We must learn from them how to acknowledge the limits of our analysis and how to find “impossible knowledge” in unaccustomed places

    Patient expectations of fair complaint handling in hospitals: empirical data

    Get PDF
    BACKGROUND: A common finding in several studies is patients' dissatisfaction with complaint handling in health care. The reasons why are for the greater part unknown. The key to an answer may be found in a better understanding of patients' expectations. We investigated patients' expectations of complaint handling in hospitals. METHODS: Subjects were patients who had lodged a complaint at the complaint committees of 74 hospitals in the Netherlands. A total of 424 patients (response 75%) completed a written questionnaire at the start of the complaint procedures. Derived from justice theory, we asked what they expected from fair procedures, fair communication and fair outcome of complaint handling. RESULTS: The predominant reason for complainants to lodge a complaint was to prevent the incident from happening again. Complainants expected fair procedures from the complaint committee, in particular an impartial position. This was most important to 87% of the complainants. They also expected to be treated respectfully. Furthermore, they expected the hospital and the professional involved to respond to their complaint. A change in hospital performances was the most wanted outcome of complaint handling, according to 79% of the complainants. They also expected disclosure from the professionals. Professionals should admit a mistake when it had occurred. More complainants (65%) considered it most important to get an explanation than an apology (41%). Only 32% of complainants expected the professional to make an effort to restore the doctor-patient relationship. A minority of complainants (7%) wanted financial compensation. CONCLUSION: Nearly all complainants want to prevent the incident from happening again, not out of pure altruism, but in order to restore their sense of justice. We conclude that complaint handling that does not allow for change is unlikely to meet patients' expectations. Secondly, complaint handling should not be left exclusively to complaint committees, the responses of hospital and professionals are indispensable

    Accurate and Transparent Path Prediction Using Process Mining

    Get PDF
    Anticipating the next events of an ongoing series of activities has many compelling applications in various industries. It can be used to improve customer satisfaction, to enhance operational efficiency, and to streamline health-care services, to name a few. In this work, we propose an algorithm that predicts the next events by leveraging business process models obtained using process mining techniques. Because we are using business process models to build the predictions, it allows business analysts to interpret and alter the predictions. We tested our approach with more than 30 synthetic datasets as well as 6 real datasets. The results have superior accuracy compared to using neural networks while being orders of magnitude faster
    corecore