46 research outputs found

    Effect of event selection on jetlike correlation measurement in d+Au collisions at sNN=200 GeV

    Get PDF
    AbstractDihadron correlations are analyzed in sNN=200 GeV d+Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions

    Beam-energy Dependence Of Charge Balance Functions From Au + Au Collisions At Energies Available At The Bnl Relativistic Heavy Ion Collider

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Balance functions have been measured in terms of relative pseudorapidity (Δη) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at sNN=7.7GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at sNN=2.76TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at sNN=7.7 GeV implies that a QGP is still being created at this relatively low energy. © 2016 American Physical Society.942CNPq, Conselho Nacional de Desenvolvimento Científico e TecnológicoMinistry of Education and Science of the Russian FederationMOE, Ministry of Education of the People's Republic of ChinaMOST, Ministry of Science and Technology of the People's Republic of ChinaNRF-2012004024, National Research FoundationNSF, National Stroke FoundationConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Short-term amplitude scintillations at 97 GHz on 6.5 km urban link

    No full text

    Analysis and modelling of rain fade durations at 97 GHz in 6.5 km urban link

    No full text

    Long-term amplitude scintillations at 97 GHz on 6.5 km urban link

    No full text

    Experimental and statistical studies of x-band transhorizon radio links over the sea

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX94770 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Transverse energy per charged particle in heavy-ion collisions: Role of collective flow

    No full text
    The ratio of (pseudo)rapidity density of transverse energy and the (pseudo)rapidity density of charged particles, which is a measure of the mean transverse energy per particle, is an important observable in high energy heavy-ion collisions, which reveals about the mechanism of particle production and the freeze-out criteria. Its collision energy and centrality dependence is exactly like the chemical freeze-out temperature till top RHIC energy. The LHC measurement at sNN\sqrt{s_{NN}} = 2.76 TeV brings up new challenges to rule out the mechanisms of gluon saturation or non-equilibrium phenomena being prevalent at high energies, which could contribute to the above observable. The Statistical Hadron Gas Model (SHGM) with a static fireball approximation has been successful in describing both the centrality and energy dependence till top RHIC energies. However, the SHGM predictions for higher energies are highly underestimated by the LHC data. In order to understand this, we have incorporated radial flow effect in an excluded volume SHGM. The hard-core radius of baryons at lower collision energies plays an important role in the description of a hadronic system. In view of this, in order to make a complete energy dependence study from FAIR to LHC energies, we have considered an excluded volume SHGM. Our studies suggest that the collective flow plays an important role in describing ET/NchE_{T}/N_{ch} and it could be one of the possible parameters to explain the jump observed in ET/NchE_{T}/N_{ch} from RHIC to LHC energies. Predictions for the LHC measurements at sNN\sqrt{s_{NN}} = 5.02 TeV are given.Comment: Same as published version in EPJ
    corecore