910 research outputs found

    First-principles characterization of ferromagnetic Mn5Ge3 for spintronic applications

    Full text link
    In the active search for potentially promising candidates for spintronic applications, we focus on the intermetallic ferromagnetic Mn5Ge3 compound and perform accurate first-principles FLAPW calculations within density functional theory. Through a careful investigation of the bulk electronic and magnetic structure, our results for the total magnetization, atomic magnetic moments, metallic conducting character and hyperfine fields are found to be in good agreement with experiments, and are elucidated in terms of a hybridization mechanism and exchange interaction. In order to assess the potential of this compound for spin-injection purposes, we calculate Fermi velocities and degree of spin-polarization; our results predict a rather high spin-injection efficiency in the diffusive regime along the hexagonal c-axis. Magneto-optical properties, such as L_2,3 X-ray magnetic circular dichroism, are also reported and await comparison with experimental data.Comment: 10 pages with 6 figures, to appear in Phys. Rev.

    X-ray exploration of the outskirts of the nearby Centaurus cluster using Suzaku and Chandra

    Full text link
    We present Suzaku observations of the Centaurus cluster out to 0.95r200, taken along a strip to the north west. We have also used congruent Chandra observations of the outskirts to resolve point sources down to a threshold flux around 7 times lower than that achievable with just Suzaku data, considerably reducing the systematic uncertainties in the cosmic X-ray background emission in the outskirts. We find that the temperature decreases by a factor of 2 from the peak temperature to the outskirts. The entropy profile demonstrates a central excess (within 0.5r200) over the baseline entropy profile predicted by simulations of purely gravitational hierarchical structure formation. In the outskirts the entropy profile is in reasonable agreement with the baseline entropy profile from Voit et al., but lies slightly below it. We find that the pressure profile agrees with the universal pressure profile of Arnaud et al. but lies slightly above it in the outskirts. The excess pressure and decrement in entropy in the outskirts appear to be the result of an excess in the measured gas density, possible due to gas clumping biasing the density measurements high. The gas mass fraction rises and reaches the mean cosmic baryon fraction at the largest radius studied. The clumping corrected gas mass fraction agrees with the expected hot gas fraction and with the simulations of Young et al. We further the analysis of Walker et al. which studied the shapes of the entropy profiles of the clusters so far explored in the outskirts with Suzaku. When scaled by the self similar entropy the Suzaku entropy profiles demonstrate a central excess over the baseline entropy profile, and are consistent with it at around r500 . However outside r500 the entropy profiles tend to lie below the baseline entropy profile.Comment: 17 pages, 15 figures. Accepted for publication in MNRA

    A novel method for unambiguous ion identification in mixed ion beams extracted from an EBIT

    Get PDF
    A novel technique to identify small fluxes of mixed highly charged ion beams extracted from an Electron Beam Ion Trap (EBIT) is presented and practically demonstrated. The method exploits projectile charge state dependent potential emission of electrons as induced by ion impact on a metal surface to separate ions with identical or very similar mass-to-charge ratio.Comment: 8 pages, 5 figure

    The Infocus Hard X-ray Telescope: Pixellated CZT Detector/Shield Performance and Flight Results

    Get PDF
    The CZT detector on the Infocus hard X-ray telescope is a pixellated solid-state device capable of imaging spectroscopy by measuring the position and energy of each incoming photon. The detector sits at the focal point of an 8m focal length multilayered grazing incidence X-ray mirror which has significant effective area between 20--40 keV. The detector has an energy resolution of 4.0keV at 32keV, and the Infocus telescope has an angular resolution of 2.2 arcminute and a field of view of about 10 arcminutes. Infocus flew on a balloon mission in July 2001 and observed Cygnus X-1. We present results from laboratory testing of the detector to measure the uniformity of response across the detector, to determine the spectral resolution, and to perform a simple noise decomposition. We also present a hard X-ray spectrum and image of Cygnus X-1, and measurements of the hard X-ray CZT background obtained with the SWIN detector on Infocus.Comment: To appear in the proceedings of the SPIE conference "Astronomical Telescopes and Instrumentation", #4851-116, Kona, Hawaii, Aug. 22-28, 2002. 12 pages, 9 figure

    Response of reverse convection to fast IMF transitions

    Get PDF
    The nature of the transition that high‐latitude reverse convection makes in response to fast interplanetary magnetic field (IMF) changes is investigated using observations from multiple spacecraft and a ground magnetometer array. We focused on two fast IMF‐transition events on 22 April 2006. Immediately after the first event, three ST5 spacecraft identified a clear change in the distribution of the polar cap field‐aligned current. Coordinate observations with the Greenland magnetometer chain showed that the near‐noon Hall current distribution, which is closely related to the polar cap field‐aligned current or reverse convection, was in a transition state for about 10 min. For the second event, the Greenland magnetic perturbations also showed that a transition state occurred in the near‐noon sector for 10–15 min. Three DMSP spacecraft that traversed the polar cap provided evidence showing that variations of the ground magnetic perturbations were produced by the transition from clockwise plasma circulation to the anticlockwise circulation over the polar cap. A simple calculation based on the Biot‐Savart law shows that the near‐noon transition state is consistent with the approach of a new convection region to the near‐noon sector at the speed of 0.5–1 km s–1, which is coupled with the moving away of the old convection region at a similar speed. For the higher‐latitude sunward flow region, it is found that the convection takes a transition state almost simultaneously (within 1 min) with that in the near‐noon sector, i.e., quasi‐instantaneous response.Key PointsTransition state with a timescale of ~10 min in the near‐noon polar cap for BZ > 0The state is consistent with the passage of old and new convection regionsAlmost simultaneous initial response in the upstream polar cap and the near noonPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111947/1/jgra51794.pd

    The Orbit of the Eclipsing X-ray Pulsar EXO 1722-363

    Get PDF
    With recent and archival Rossi X-Ray Timing Explorer (RXTE) X-ray measurements of the heavily obscured X-ray pulsar EXO 1722-363 (IGR J17252-3616), we carried out a pulse timing analysis to determine the orbital solution for the first time. The binary system is characterized by a_x sin(i) = 101 +/- 3 lt-s and P_orb = 9.7403 +/- 0.0004 days (90% confidence), with the precision of the orbital period being obtained by connecting datasets separated by more than 7 years (272 orbital cycles). The orbit is consistent with circular, and e < 0.19 at the 90% confidence level. The mass function is 11.7 +/- 1.2 M_sun and confirms that this source is a High Mass X-ray Binary (HMXB) system. The orbital period, along with the previously known ~414 s pulse period, places this system in the part of the Corbet diagram populated by supergiant wind accretors. Using previous eclipse time measurements by Corbet et al. and our orbital solution, combined with the assumption that the primary underfills its Roche lobe, we find i > 61 degrees at the 99% confidence level, the radius of the primary is between 21 R_sun and 37 R_sun, and its mass is less than about 22 M_sun. The acceptable range of radius and mass shows that the primary is probably a supergiant of spectral type B0I-B5I. Photometric measurements of its likely counterpart are consistent with the spectral type and luminosity if the distance to the system is between 5.3 kpc and 8.7 kpc. Spectral analysis of the pulsar as a function of orbital phase reveals an evolution of the hydrogen column density suggestive of dense filaments of gas in the downstream wake of the pulsar, with higher levels of absorption seen at orbital phases 0.5-1.0, as well as a variable Fe K_alpha line.Comment: Submitted to ApJ, 11 pages, 11 figure

    Elemental Abundances in the X-Ray Gas of Early-Type Galaxies with XMM and Chandra Observations

    Full text link
    The source of hot gas in elliptical galaxies is thought to be due to stellar mass loss, with contributions from supernova events and possibly from infall from a surrounding environment. This picture predicts supersolar values for the metallicity of the gas toward the inner part of the galaxy, which can be tested by measuring the gas phase abundances. We use high-quality data for 10 nearby early-type galaxy from XMM-Newton, featuring both the EPIC and the Reflection Grating Spectrometer, where the strongest emission lines are detected with little blending; some Chandra data are also used. We find excellent consistency in the elemental abundances between the different XMM instruments and good consistency with Chandra. Differences in abundances with aperture size and model complexity are examined, but large differences rarely occur. For a two-temperature thermal model plus a point source contribution, the median Fe and O abundances are 0.86 and 0.44 of the Solar value, while Si and Mg abundances are similar to that for Fe. This is similar to stellar abundances for these galaxies but supernovae were expected to enhance the gas phase abundances considerably, which is not observed.Comment: 35 pages, 10 figures, accepted for publication in Astrophysical Journa
    • 

    corecore