14 research outputs found

    Effects of endodontic irrigants on biofilm matrix polysaccharides

    Full text link
    AIM To specifically investigate the effect of endodontic irrigants at their clinical concentration on matrix polysaccharides of cultured biofilms. METHODOLOGY Saccharolytic effects of 3% H2 O2 , 2% chlorhexidine (CHX), 17% EDTA, 5% NaOCl, and 0.9% saline (control) were tested using agarose (α 1-3 and β 1-4 glycosidic bonds) blocks (n = 3) in a weight assay. The irrigants were also applied to three-species biofilms (Streptococcus mutans UAB 159, Streptococcus oralis OMZ 607 and Actinomyces oris OMZ 745) grown anaerobically on hydroxyapatite discs (n = 6). Glycoconjugates in the matrix and total bacterial cell volumes were determined using combined Concanavalin A-/Syto 59-staining and confocal laser scanning microscopy. Volumes of each scanned area (triplicates/sample) were calculated using Imaris software. Data were compared between groups using one-way ANOVA/Tukey HSD, alpha = 0.05. RESULTS The weight assay revealed that NaOCl was the only irrigant under investigation capable of dissolving the agarose blocks. NaOCl eradicated stainable matrix and bacteria in cultured biofilms after 1 min of exposure (P < 0.05 compared to all groups, volumes in means ± standard deviation, 10(-3) mm(3) per 0.6 mm(2) disc; NaOCl matrix: 0.10 ± 0.08, bacteria: 0.03 ± 0.06; saline control matrix: 4.01 ± 1.14, bacteria: 11.56 ± 3.02). EDTA also appeared to have some effect on the biofilm matrix (EDTA matrix: 1.90 ± 0.33, bacteria: 9.26 ± 2.21), while H2 O2 and CHX merely reduced bacterial cell volumes. CONCLUSION Sodium hypochlorite can break glycosidic bonds. It dissolves glycoconjugates in the biofilm matrix. It also lyses bacterial cells. This article is protected by copyright. All rights reserved

    Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm

    Full text link
    OBJECTIVES: The aim of the present study was to investigate different fluorescence-based, two-color viability assays for visualization and quantification of initial bacterial adherence and to establish reliable alternatives to the ethidium bromide staining procedure. MATERIALS AND METHODS: Bacterial colonization was attained in situ on bovine enamel slabs (n = 6 subjects). Five different live/dead assays were investigated (fluorescein diacetate (FDA)/propidium iodide (PI), Syto 9/PI (BacLight®), FDA/Sytox red, Calcein acetoxymethyl (AM)/Sytox red, and carboxyfluorescein diacetate (CFDA)/Sytox red). After 120 min of oral exposure, analysis was performed with an epifluorescence microscope. Validation was carried out, using the colony-forming units for quantification and the transmission electron microscopy for visualization after staining. RESULTS: The average number of bacteria amounted to 2.9 ± 0.8 × 10(4) cm(-2). Quantification with Syto 9/PI and Calcein AM/Sytox red yielded an almost equal distribution of cells (Syto 9/PI 45 % viable, 55 % avital; Calcein AM/Sytox red 52 % viable, 48 % avital). The live/dead ratio of CFDA/Sytox red and FDA/Sytox red was 3:2. An aberrant dispersal was recorded with FDA/PI (viable 34 %, avital 66 %). The TEM analysis indicated that all staining procedures affect the structural integrity of the bacterial cells considerably. CONCLUSION: The following live/dead assays are reliable techniques for differentiation of viable and avital adherent bacteria: BacLight, FDA/Sytox red, Calcein AM/Sytox red, and CFDA/Sytox red. These fluorescence-based techniques are applicable alternatives to toxic and instable conventional assays, such as the staining procedure based on ethidium bromide. CLINICAL RELEVANCE: Differentiation of viable and avital adherent bacteria offers the possibility for reliable evaluation of different mouth rinses, oral medication, and disinfections
    corecore