5,048 research outputs found
Diffusion-limited deposition with dipolar interactions: fractal dimension and multifractal structure
Computer simulations are used to generate two-dimensional diffusion-limited
deposits of dipoles. The structure of these deposits is analyzed by measuring
some global quantities: the density of the deposit and the lateral correlation
function at a given height, the mean height of the upper surface for a given
number of deposited particles and the interfacial width at a given height.
Evidences are given that the fractal dimension of the deposits remains constant
as the deposition proceeds, independently of the dipolar strength. These same
deposits are used to obtain the growth probability measure through Monte Carlo
techniques. It is found that the distribution of growth probabilities obeys
multifractal scaling, i.e. it can be analyzed in terms of its
multifractal spectrum. For low dipolar strengths, the spectrum is
similar to that of diffusion-limited aggregation. Our results suggest that for
increasing dipolar strength both the minimal local growth exponent
and the information dimension decrease, while the fractal
dimension remains the same.Comment: 10 pages, 7 figure
Diffusion-limited deposition of dipolar particles
Deposits of dipolar particles are investigated by means of extensive Monte
Carlo simulations. We found that the effect of the interactions is described by
an initial, non-universal, scaling regime characterized by orientationally
ordered deposits. In the dipolar regime, the order and geometry of the clusters
depend on the strength of the interactions and the magnetic properties are
tunable by controlling the growth conditions. At later stages, the growth is
dominated by thermal effects and the diffusion-limited universal regime
obtains, at finite temperatures. At low temperatures the crossover size
increases exponentially as T decreases and at T=0 only the dipolar regime is
observed.Comment: 5 pages, 4 figure
Energy Efficiency Measures for an Electrical Material Industry
The main goal of the present paper is to present the study of energy efficiency measures for an electrical material industry. The high-energy consumption of this kind of industry lead companies to search for solutions that allow increasing the energy efficiency in their installations and in the processes, promoting the reduction of the energy consumption and costs. In this context, the objectives of this study emerged, which resulted from the main needs identified by the company. Therefore, the work was divided into four parts. The first one, was the study of replacing the existing lighting (mainly mercury vapor lamps by led); another study conducted was the replacement of the electric motors in injection machines by new and more efficient ones; the third one was the installation of a photovoltaic solar system (for self-consumption) and, finally, the project of a new power converter station for the company. The energy efficiency studies carried out are based on: a careful analysis of the data provided by the company; all the measurements done; the consumption profiles that have been drawn; an extensive market research (with the purpose of finding the most efficient solutions for each case); and in already existing and proven calculation methodologies, leading, in this way, to a greater reliability of the obtained results. These studies showed to which extent the implementation of the various measures presented are economically viable, their impact on the reduction of energy consumption and the annual savings achieved.This work was supported by Coimbra Institute of Engineering – Polytechnic Institute of Coimbra and by projects: UID/MULTI/00308/2019 (supported by the Portuguese ‘Fundação para a Ciência e a Tecnologia’: FCT – Foundation for Science and Technology) and by the European Regional Development Fund through the COMPETE 2020 Programme, FCT Portuguese Foundation for Science and Technology within project T4ENERTEC (POCI-01- 0145-FEDER-029820)
Tunneling effects on impurity spectral function in coupled asymmetric quantum wires
The impurity spectral function is studied in coupled double quantum wires at
finite temperatures. Simple anisotropy in the confinement direction of the
wires leads to finite non-diagonal elements of the impurity spectral function
matrix. These non-diagonal elements are responsible for tunneling effects and
result in pronounced extra peak in the impurity spectral function up to
temperatures as high as 20 K.Comment: Accepted in Phys. Rev.
Synthesis of an antibody-like material for the detection of Albumin
6th Graduate Student Symposium on Molecular Imprinting6th Graduate Student Symposium on Molecular Imprinting, Medway School of Pharmacy, Kent, 27-28 de Agosto 2015A novel molecularly imprinted polymer (MIP) is presented for the detection of Albumin,
currently a biomarker of several diseases. The material acted as an antibody for Albumin and
was obtained through a bulk imprinting approach, by electropolymerizing Eriochrome blackT
(EBT) around the target protein
A novel printed 3-electrode system for the electrochemical detection of sulfadiazine
We thank the financial support of 3C´s – Cellulose and Cork in the Control of antibiotics in
aquaculture (PTDC/AAG-TEC/5400/2014 and POCI-01-0145-FEDER-016637), to FEDER, through COMPETE2020,
POCI, and FCT (Fundação para a Ciência e a Tecnologia I.P.).info:eu-repo/semantics/publishedVersio
- …