672 research outputs found

    Mean Field Dynamos with Algebraic and Dynamic alpha-Quenchings

    Full text link
    Calculations for mean field dynamo models (in both full spheres and spherical shells), with both algebraic and dynamic α\alpha--quenchings, show qualitative as well as quantitative differences and similarities in the dynamical behaviour of these models. We summarise and enhance recent results with extra examples. Overall, the effect of using a dynamic α\alpha appears to be complicated and is affected by the region of parameter space examined.Comment: 6 pages, 2 postscript figures, also available at http://www.maths.qmw.ac.uk/~eo

    A model-independent dark energy reconstruction scheme using the geometrical form of the luminosity-distance relation

    Get PDF
    We put forward a new model-independent reconstruction scheme for dark energy which utilises the expected geometrical features of the luminosity-distance relation. The important advantage of this scheme is that it does not assume explicit ansatzes for cosmological parameters but only some very general cosmological properties via the geometrical features of the reconstructed luminosity-distance relation. Using the recently released supernovae data by the Supernova Legacy Survey together with a phase space representation, we show that the reconstructed luminosity-distance curves best fitting the data correspond to a slightly varying dark energy density with the Universe expanding slightly slower than the Lambda CDM model. However, the Lambda CDM model fits the data at 1 sigma significance level and the fact that our best fitting luminosity-distance curve is lower than that of the corresponding Lambda CDM model could be due to systematics. The transition from an accelerating to a decelerating expansion occurs at a redshift larger than z=0.35. Interpreting the dark energy as a minimally coupled scalar field we also reconstruct the scalar field and its potential. We constrain Ωm0\Omega_{m_0} using the baryon acoustic oscillation peak in the SDSS luminous red galaxy sample and find that the best fit is obtained with Ωm0=0.27\Omega_{m_0}=0.27, in agreement with the CMB data.Comment: 10 pages, 18 figure

    Effects of boundary conditions on the dynamics of the solar convection zone

    Get PDF
    Recent analyses of the helioseismic data have produced evidence for a variety of interesting dynamical behaviour associated with torsional oscillations. What is not so far clear is whether these oscillations extend all the way to the bottom of the convection zone and, if so, whether the oscillatory behaviour at the top and the bottom of the convection zone is different. Attempts have been made to understand such modes of behaviour within the framework of nonlinear dynamo models which include the nonlinear action of the Lorentz force of the dynamo generated magnetic field on the solar angular velocity. One aspect of these models that remains uncertain is the nature of the boundary conditions on the magnetic field. Here by employing a range of physically plausible boundary conditions, we show that for near-critical and moderately supercritical dynamo regimes, the oscillations extend all the way down to the bottom of the convection zone. Thus, such penetration is an extremely robust feature of the models considered. We also find parameter ranges for which the supercritical models show spatiotemporal fragmentation for a range of choices of boundary conditions. Given their observational importance, we also make a comparative study of the amplitude of torsional oscillations as a function of the boundary conditions

    In--out intermittency in PDE and ODE models

    Get PDF
    We find concrete evidence for a recently discovered form of intermittency, referred to as in--out intermittency, in both PDE and ODE models of mean field dynamos. This type of intermittency (introduced in Ashwin et al 1999) occurs in systems with invariant submanifolds and, as opposed to on--off intermittency which can also occur in skew product systems, it requires an absence of skew product structure. By this we mean that the dynamics on the attractor intermittent to the invariant manifold cannot be expressed simply as the dynamics on the invariant subspace forcing the transverse dynamics; the transverse dynamics will alter that tangential to the invariant subspace when one is far enough away from the invariant manifold. Since general systems with invariant submanifolds are not likely to have skew product structure, this type of behaviour may be of physical relevance in a variety of dynamical settings. The models employed here to demonstrate in--out intermittency are axisymmetric mean--field dynamo models which are often used to study the observed large scale magnetic variability in the Sun and solar-type stars. The occurrence of this type of intermittency in such models may be of interest in understanding some aspects of such variabilities.Comment: To be published in Chaos, June 2001, also available at http://www.eurico.web.co

    Second Order Perturbations of Flat Dust FLRW Universes with a Cosmological Constant

    Get PDF
    We summarize recent results concerning the evolution of second order perturbations in flat dust irrotational FLRW models with Λ≠0\Lambda\ne 0. We show that asymptotically these perturbations tend to constants in time, in agreement with the cosmic no-hair conjecture. We solve numerically the second order scalar perturbation equation, and very briefly discuss its all time behaviour and some possible implications for the structure formation.Comment: 6 pages, 1 figure. to be published in "Proceedings of the 5th Alexander Friedmann Seminar on Gravitation and Cosmology", Int. Journ. Mod. Phys. A (2002). Macros: ws-ijmpa.cls, ws-p9-75x6-50.cl

    A note on the large-angle anisotropies in the WMAP cut-sky maps

    Full text link
    Recent analyses of the WMAP data seem to indicate the possible presence of large-angle anisotropy in the Universe. If confirmed, these can have important consequences for our understanding of the Universe. A number of attempts have recently been made to establish the reality and nature of such anisotropies in the CMB data. Among these is a directional indicator recently proposed by the authors. A distinctive feature of this indicator is that it can be used to generate a sky map of the large-scale anisotropies of the CMB maps. Applying this indicator to full-sky temperature maps we found a statistically significant preferred direction. The full-sky maps used in these analyses are known to have residual foreground contamination as well as complicated noise properties. Thus, here we performed the same analysis for a map where regions with high foreground contamination were removed. We find that the main feature of the full-sky analysis, namely the presence of a significant axis of asymmetry, is robust with respect to this masking procedure. Other subtler anomalies of the full-sky are on the other hand no longer present.Comment: 10 pages, 3 figeres. We performed a similar analysis of arXiv:astro-ph/0511666 by considering the LILC map with a Kp2 sky cut, and find that the presence of a significant axis of asymmetry is robust with respect to this masking procedur

    Evolution of the density contrast in inhomogeneous dust models

    Full text link
    With the help of families of density contrast indicators, we study the tendency of gravitational systems to become increasingly lumpy with time. Depending upon their domain of definition, these indicators could be local or global. We make a comparative study of these indicators in the context of inhomogeneous cosmological models of Lemaitre--Tolman and Szekeres. In particular, we look at the temporal asymptotic behaviour of these indicators and ask under what conditions, and for which class of models, they evolve monotonically in time. We find that for the case of ever-expanding models, there is a larger class of indicators that grow monotonically with time, whereas the corresponding class for the recollapsing models is more restricted. Nevertheless, in the absence of decaying modes, indicators exist which grow monotonically with time for both ever-expanding and recollapsing models simultaneously. On the other hand, no such indicators may found which grow monotonically if the decaying modes are allowed to exist. We also find the conditions for these indicators to be non-divergent at the initial singularity in both models. Our results can be of potential relevance for understanding structure formation in inhomogeneous settings and in debates regarding gravitational entropy and arrow of time. In particular, the spatial dependence of turning points in inhomogeneous cosmologies may result in multiple density contrast arrows in recollapsing models over certain epochs. We also find that different notions of asymptotic homogenisation may be deduced, depending upon the density contrast indicators used.Comment: 22 pages, 1 figure. To be published in Classical and Quantum Gravit

    Optical response of supported gold nanodisks

    Get PDF
    It is shown that the ellipsometric spectra of short range ordered planar arrays of gold nanodisks supported on glass substrates can be described by modeling the nanostructured arrays as uniaxial homogeneous layers with dielectric functions of the Lorentz type. However, appreciable deviations from experimental data are observed in calculated spectra of irradiance measurements. A qualitative and quantitative description of all measured spectra is obtained with a uniaxial effective medium dielectric function in which the nanodisks are modeled as oblate spheroids. Dynamic depolarization factors in the long-wavelength approximation and interaction with the substrate are considered. Similar results are obtained calculating the optical spectra using the island-film theory. Nevertheless, a small in-plane anisotropy and quadrupolar coupling effects reveal a very complex optical response of the nanostructured arrays
    • …
    corecore