509 research outputs found

    Indirect contact predicts direct contact : longitudinal evidence and the mediating role of intergroup anxiety

    Get PDF
    While the effects of direct and indirect forms of contact on intergroup relations are well documented, little is known about their longitudinal co-development. Based on the social-psychological literature, we hypothesize that indirect contact predicts future direct contact by reducing intergroup anxiety. Across five longitudinal studies (Study 1: German adults, N = 560; Study 2: German, Dutch, and Swedish school students, N = 6,600; Study 3: Northern Irish children, N = 1,593; Study 4: Northern Irish adults, N = 404; Study 5: German adults, N = 735), we systematically examined this effect, and further tested the mediating role of intergroup anxiety in Studies 3 to 5. Cross-lagged models provided consistent evidence for the positive effect of indirect contact on future direct contact, while a reduction in intergroup anxiety mediates this effect in most models. Results highlight the importance of indirect contact, which has the potential to increase direct contact, and thus promote social cohesion in diverse contexts, over time.PostprintPeer reviewe

    Long‐Term Effects of Tree Expansion and Reduction on Soil Climate in a Semiarid Ecosystem

    Get PDF
    In sagebrush ecosystems, pinyon and juniper tree expansion reduces water available to perennial shrubs and herbs. We measured soil water matric potential and temperatures at 13–30 and 50–65 cm soil depths in untreated and treated plots across a range of environmental conditions. We sought to determine the effects of tree expansion, tree reduction treatments, and expansion phase at time of treatment over 12–13 yr post‐treatment. Because the effects of tree reduction on vegetation can vary with the soil temperature/moisture regime, we also analyzed differences in soil climate variables between the mesic/aridic‐xeric and frigid/xeric regime classifications for our sites. Growing conditions during all seasons except spring were greatly limited by lack of available water, low temperatures, or both. Advanced tree expansion reduced wet days (total hours per 24 hr when hourly average soil water matric potential \u3e−1.5 MPa), especially in early spring. Fire and mechanical tree reduction increased wet days and wet degree days (sum of hourly soil temperatures \u3e0°C when soil is wet per 24 hr) compared with no treatment for most seasons. Burning resulted in higher soil temperatures than untreated or mechanically treated woodlands. Tree reduction at advanced expansion phases increased wet days in spring more than when implemented at earlier phases of expansion. Added wet days from tree reduction were negatively associated with October through June precipitation and vegetation cover, rather than time since treatment, with more wet days added on drier sites and years. The longer period of water availability in spring supports increased growth and cover of not only shrubs and perennial herbs, but also invasive weeds on warmer and drier sites, for many years after tree reduction. We found that sites classified as mesic/aridic‐xeric had warmer soil temperatures all seasons and were drier in spring and winter than sites classified as frigid/xeric. Land managers should consider reducing trees at earlier phases of expansion or consider revegetation when treating at advanced phases on these warmer and drier sites that lack perennial herb potential

    Developing a Model Framework for Predicting Effects of Woody Expansion and Fire on Ecosystem Carbon and Nitrogen in a Pinyon-Juniper Woodland

    Get PDF
    Sagebrush-steppe ecosystems are one of the most threatened ecosystems in North America due to woodland expansion, wildfire, and exotic annual grass invasion. Some scientists and policy makers have suggested that woodland expansion will lead to increased carbon (C) storage on the landscape. To assess this potential we used data collected from a Joint Fire Sciences Program demonstration area to develop a Microsoft Excelℱ based biomass, carbon, and nitrogen (N) spreadsheet model. The model uses input for tree cover, soil chemistry, soil physical properties, and vegetation chemistry to estimate biomass, carbon, and nitrogen accumulation on the landscape with woodland expansion. The model also estimates C and N losses associated with prescribed burning. On our study plots we estimate in treeless sagebrush-steppe ecosystems, biomass accounts for 4.5 Mg ha−1 C and 0.3 Mg ha−1 N this is \u3c10% of total estimated ecosystem C and N to a soil depth of 53 cm, but as tree cover increases to near closed canopy conditions aboveground biomass may account for 62 Mg ha−1 C and 0.6 Mg ha−1 N which is nearly 53% of total estimated ecosystem C and 13% of total estimated ecosystem N to a soil depth of 53 cm. Prescribed burning removes aboveground biomass, C and N, but may increase soil C at areal tree cover below 26%. The model serves as a tool by which we are able to assess our understanding of the system and identify knowledge gaps which exist for this ecosystem. We believe that further work is necessary to quantify herbaceous biomass, root biomass, woody debris decomposition, and soil C and N with woodland expansion and prescribed fire. It will also be necessary to appropriately scale these estimates from the plot to the landscape

    Influence of Prescribed Fire on Ecosystem Biomass, Carbon, and Nitrogen in a Pinyon Juniper Woodland

    Get PDF
    Increases in pinyon and juniper woodland cover associated with land-use history are suggested to provide offsets for carbon emissions in arid regions. However, the largest pools of carbon in arid landscapes are typically found in soils, and aboveground biomass cannot be considered long-term storage in fire-prone ecosystems. Also, the objectives of carbon storage may conflict with management for other ecosystem services and fuels reduction. Before appropriate decisions can be made it is necessary to understand the interactions between woodland expansion, management treatments, and carbon retention. We quantified effects of prescribed fire as a fuels reduction and ecosystem maintenance treatment on fuel loads, ecosystem carbon, and nitrogen in a pinyon–juniper woodland in the central Great Basin. We found that plots containing 30% tree cover averaged nearly 40 000 kg · ha−1 in total aboveground biomass, 80 000 kg · ha−1 in ecosystem carbon (C), and 5 000 kg · ha−1 in ecosystem nitrogen (N). Only 25% of ecosystem C and 5% of ecosystem N resided in aboveground biomass pools. Prescribed burning resulted in a 65% reduction in aboveground biomass, a 68% reduction in aboveground C, and a 78% reduction in aboveground N. No statistically significant change in soil or total ecosystem C or N occurred. Prescribed fire was effective at reducing fuels on the landscape and resulted in losses of C and N from aboveground biomass. However, the immediate and long-term effects of burning on soil and total ecosystem C and N is still unclear

    Woodland Expansion\u27s Influence on Belowground Carbon and Nitrogen in the Great Basin U.S.

    Get PDF
    Vegetation changes associated with climate shifts and anthropogenic disturbance can have major impacts on biogeochemical cycling and soils. Much of the Great Basin, U.S. is currently dominated by sagebrush (Artemisia tridentate (Rydb.) Boivin) ecosystems. Sagebrush ecosystems are increasingly influenced by pinyon (Pinus monophylla Torr. & FrĂ©m and Pinus edulis Engelm.) and juniper (Juniperus osteosperma Torr. and Juniperus occidentalis Hook.) expansion. Some scientists and policy makers believe that increasing woodland cover in the intermountain western U.S. offers the possibility of increased organic carbon (OC) storage on the landscape; however, little is currently known about the distribution of OC on these landscapes, or the role that nitrogen (N) plays in OC retention. We quantified the relationship between tree cover, belowground OC, and total below ground N in expansion woodlands at 13 sites in Utah, Oregon, Idaho, California, and Nevada, USA. One hundred and twenty nine soil cores were taken using a mechanically driven diamond tipped core drill to a depth of 90 cm. Soil, coarse fragments, and coarse roots were analyzed for OC and total N. Woodland expansion influenced the vertical distribution of root OC by increasing 15–30 cm root OC by 2.6 Mg ha−1 and root N by 0.04 Mg ha−1. Root OC and N increased through the entire profile by 3.8 and 0.06 Mg ha−1 respectively. Woodland expansion influenced the vertical distribution of soil OC by increasing surface soil (0–15 cm) OC by 2.2 Mg ha−1. Woodland expansion also caused a 1.3 Mg ha−1 decrease in coarse fragment associated OC from 75–90 cm. Our data suggests that woodland expansion into sagebrush ecosystems has limited potential to store additional belowground OC, and must be weighed against the risk of increased wildfire and exotic grass invasion

    Ocular metabolism and distribution of drugs in the rabbit eye : Quantitative assessment after intracameral and intravitreal administrations

    Get PDF
    Quantitation of ocular drug metabolism is important, but only sparse data is currently available. Herein, the pharmacokinetics of four drugs, substrates of metabolizing enzymes, was investigated in albino rabbit eyes after intracameral and intravitreal administrations. Acetaminophen, brimonidine, cefuroxime axetil, and sunitinib and their corresponding metabolites were quantitated in the cornea, iris-ciliary body, aqueous humor, lens, vitreous humor, and neural retina with LC-MS/MS analytics. Non-compartmental analysis was employed to estimate the pharmacokinetic parameters of the parent drugs and metabolites. The area under the curve (AUC) values of metabolites were 12-70 times lower than the AUC values of the parent drugs in the tissues with the highest enzymatic activity. The ester prodrug cefuroxime axetil was an exception because it was efficiently and quantitatively converted to cefuroxime in the ocular tissues. In contrast to the liver, sulfotransferases, aldehyde oxidase, and cytochrome P450 3A activities were low in the eye and they had negligible impact on ocular drug clearance. With the exception of esterase substrates, metabolism seems to be a minor player in ocular pharmacokinetics. However, metabolites might contribute to ocular toxicity, and drug metabolism in various eye tissues should be investigated and understood thoroughly.Peer reviewe

    Dynamics of Western Juniper Woodland Expansion into Sagebrush Communities in Central Oregon

    Get PDF
    Western juniper (Juniperus occidentalis) woodlands in Oregon have expanded four-fold from 600,000 ha in 1930 to \u3e 2.6 million ha, often resulting in the reduction and fragmentation of sagebrush (Artemisia spp.) communities. We documented dynamics of western juniper across the John Day Ecological Province in central Oregon by recording size class and growth form at 178 sites. We used stratified random sampling, with strata based on vegetation association (sagebrush, juniper, other) and distance from juniper stands. Only 26 percent of sites contained pre-settlement trees (in other words, \u3e 140 years old), and \u3c 5 percent of the 2,254 junipers tallied were pre-settlement trees. Mean densities of pre-settlement trees by stratum ranged from 0 to 18 trees/ha, suggesting that historically, juniper was widely scattered across the landscape. Current densities of post-settlement trees ranged from 75 to 211 trees/ha in non-woodland strata to 457 trees/ha in the juniper stratum. Juniper in non-woodland strata was most abundant in sites adjacent to juniper stands and in sagebrush communities. Mean densities of post-settlement trees were greatest in the \u3e 2.0-m tall size class (82 trees/ha), followed by the 0.3 to 1-m tall size class (52 trees/ha). These densities pose substantial risk to sagebrush communities in central Oregon. Questions remain about the extent of western juniper woodlands across the species’ range that have replaced or are expanding into sagebrush communities versus sites that historically supported woodlands. However, our findings suggest that within sagebrush communities of the John Day province, intensive management through removal of western juniper may be prudent, while retaining pre-settlement trees
    • 

    corecore