606 research outputs found

    Limits on stable iron in Type \,Ia supernovae from NIR spectroscopy

    Full text link
    We obtained optical and near-infrared spectra of Type \,Ia supernovae (SNe \,Ia) at epochs ranging from 224 to 496 days after the explosion. The spectra show emission lines from forbidden transitions of singly ionised iron and cobalt atoms. We used non-local thermodynamic equilibrium (NLTE) modelling of the first and second ionisation stages of iron, nickel, and cobalt to fit the spectra using a sampling algorithm allowing us to probe a broad parameter space. We derive velocity shifts, line widths, and abundance ratios for iron and cobalt. The measured line widths and velocity shifts of the singly ionised ions suggest a shared emitting region. Our data are fully compatible with radioactive 56^{56}Ni decay as the origin for cobalt and iron. We compare the measured abundance ratios of iron and cobalt to theoretical predictions of various SN \,Ia explosion models. These models include, in addition to 56^{56}Ni, different amounts of 57^{57}Ni and stable 54,56^{54,56}Fe. We can exclude models that produced only 54,56^{54,56}Fe or only 57^{57}Ni in addition to 56^{56}Ni. If we consider a model that has 56^{56}Ni, 57^{57}Ni, and 54,56^{54,56}Fe then our data imply that these ratios are 54,56^{54,56}Fe / 56^{56}Ni =0.272±0.086=0.272\pm0.086 and 57^{57}Ni / 56^{56}Ni =0.032±0.011=0.032\pm0.011.Comment: 10 pages, 7 figures, Accepted for publication in A&

    A massive star origin for an unusual helium-rich supernova in an elliptical galaxy

    Full text link
    The unusual helium-rich (type Ib) supernova SN 2005E is distinguished from any supernova hitherto observed by its faint and rapidly fading light curve, prominent calcium lines in late-phase spectra and lack of any mark of recent star formation near the supernova location. These properties are claimed to be explained by a helium detonation in a thin surface layer of an accreting white dwarf (Perets et al. 2010). Here we report on observations of SN 2005cz appeared in an elliptical galaxy, whose observed properties resemble those of SN 2005E in that it is helium-rich and unusually faint, fades rapidly, shows much weaker oxygen emission lines than those of calcium in the well-evolved spectrum. We argue that these properties are best explained by a core-collapse supernova at the low-mass end (8−12M⊙8-12 M_{\odot}) of the range of massive stars that explode (Smartt 2009). Such a low mass progenitor had lost its hydrogen-rich envelope through binary interaction, having very thin oxygen-rich and silicon-rich layers above the collapsing core, thus ejecting a very small amount of radioactive 56^{56}Ni and oxygen. Although the host galaxy NGC 4589 is an elliptical, some studies have revealed evidence of recent star-formation activity (Zhang et al. 2008), consistent with the core-collapse scenario.Comment: Accepted by Nature (24 March 2010), 32 pages including Supplementary Informatio

    Nebular spectroscopy of SN 2014J: Detection of stable nickel in near infrared spectra

    Full text link
    We present near infrared (NIR) spectroscopy of the nearby supernova 2014J obtained ∌\sim450 d after explosion. We detect the [Ni II] 1.939 ÎŒ\mum line in the spectra indicating the presence of stable 58^{58}Ni in the ejecta. The stable nickel is not centrally concentrated but rather distributed as the iron. The spectra are dominated by forbidden [Fe II] and [Co II] lines. We use lines, in the NIR spectra, arising from the same upper energy levels to place constraints on the extinction from host galaxy dust. We find that that our data are in agreement with the high AVA_V and low RVR_V found in earlier studies from data near maximum light. Using a 56^{56}Ni mass prior from near maximum light Îł\gamma-ray observations, we find ∌\sim0.05 M⊙_\odot of stable nickel to be present in the ejecta. We find that the iron group features are redshifted from the host galaxy rest frame by ∌\sim600 km s−1^{-1}.Comment: 6 pages, 4 figures, submitted to A&

    Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type Iax supernova 2008ha

    Full text link
    Stellar evolution models predict the existence of hybrid white dwarfs (WDs) with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with masses ~1.1 Msun, hybrid WDs in a binary system may easily approach the Chandrasekhar mass (MCh) by accretion and give rise to a thermonuclear explosion. Here, we investigate an off-centre deflagration in a near-MCh hybrid WD under the assumption that nuclear burning only occurs in carbon-rich material. Performing hydrodynamics simulations of the explosion and detailed nucleosynthesis post-processing calculations, we find that only 0.014 Msun of material is ejected while the remainder of the mass stays bound. The ejecta consist predominantly of iron-group elements, O, C, Si and S. We also calculate synthetic observables for our model and find reasonable agreement with the faint Type Iax SN 2008ha. This shows for the first time that deflagrations in near-MCh WDs can in principle explain the observed diversity of Type Iax supernovae. Leaving behind a near-MCh bound remnant opens the possibility for recurrent explosions or a subsequent accretion-induced collapse in faint Type Iax SNe, if further accretion episodes occur. From binary population synthesis calculations, we find the rate of hybrid WDs approaching MCh to be on the order of 1 percent of the Galactic SN Ia rate.Comment: 9 pages, 7 figures, 2 tables, accepted for publication in MNRA

    Large Interstellar Polarisation Survey. LIPS I: FORS2 spectropolarimetry in the Southern Hemisphere

    Full text link
    Polarimetric studies of light transmitted through interstellar clouds may give constraints on the properties of the interstellar dust grains. Traditionally, broadband linear polarisation (BBLP) measurements have been considered an important diagnostic tool for the study of the interstellar dust, while comparatively less attention has been paid to spectropolarimetric measurements. However, spectropolarimetry may offer stronger constraints than BBLP, for example by revealing narrowband features, and by allowing us to distinguish the contribution of dust from the contribution of interstellar gas. Therefore, we have decided to carry out a Large Interstellar Polarisation Survey (LIPS) using spectropolarimetric facilities in both hemispheres. Here we present the results obtained in the Southern Hemisphere with the FORS2 instrument of the ESO Very Large Telescope. Our spectra cover the wavelength range 380--950\,nm at a spectral resolving power of about 880. We have produced a publicly available catalogue of 127 linear polarisation spectra of 101 targets. We also provide the Serkowski-curve parameters, as well as the wavelength gradient of the polarisation position angle for the interstellar polarisation along 76 different lines of sight. In agreement with previous literature, we found that the best-fit parameters of the Serkowski-curve are not independent of each other. However, the relationships that we obtained are not always consistent with what was found in previous studies.Comment: Accepted by A&A (replaced on 12 October 2017 simply to correct a Metadata error

    The Hubble Constant determined through an inverse distance ladder including quasar time delays and Type Ia supernovae

    Full text link
    Context. The precise determination of the present-day expansion rate of the Universe, expressed through the Hubble constant H0H_0, is one of the most pressing challenges in modern cosmology. Assuming flat Λ\LambdaCDM, H0H_0 inference at high redshift using cosmic-microwave-background data from Planck disagrees at the 4.4σ\sigma level with measurements based on the local distance ladder made up of parallaxes, Cepheids and Type Ia supernovae (SNe Ia), often referred to as "Hubble tension". Independent, cosmological-model-insensitive ways to infer H0H_0 are of critical importance. Aims. We apply an inverse-distance-ladder approach, combining strong-lensing time-delay-distance measurements with SN Ia data. By themselves, SNe Ia are merely good relative distance indicators, but by anchoring them to strong gravitational lenses one can obtain an H0H_0 measurement that is relatively insensitive to other cosmological parameters. Methods. A cosmological parameter estimate is performed for different cosmological background models, both for strong-lensing data alone and for the combined lensing + SNe Ia data sets. Results. The cosmological-model dependence of strong-lensing H0H_0 measurements is significantly mitigated through the inverse distance ladder. In combination with SN Ia data, the inferred H0H_0 consistently lies around 73-74 km s−1^{-1} Mpc−1^{-1}, regardless of the assumed cosmological background model. Our results agree nicely with those from the local distance ladder, but there is a >2σ\sigma tension with Planck results, and a ~1.5σ\sigma discrepancy with results from an inverse distance ladder including Planck, Baryon Acoustic Oscillations and SNe Ia. Future strong-lensing distance measurements will reduce the uncertainties in H0H_0 from our inverse distance ladder.Comment: 5 pages, 3 figures, A&A letters accepted versio

    In vivo evaluation of pathogenicity and transmissibility of influenza A(H1N1)pdm09 hemagglutinin receptor binding domain 222 intrahost variants isolated from a single immunocompromised patient

    Get PDF
    AbstractThe influenza A(H1N1)pdm09 virus has circulated worldwide and continued to cause complicated infections and deaths. Reports have identified an increased prevalence of the hemagglutinin receptor binding domain D222G mutation in viruses isolated from individuals who have suffered such severe infections, but this association is still unclear. Virus isolated from a nasopharyngeal wash of a severely ill immunocompromised patient at the time of diagnosis contained the D222, but isolates collected later in his course from a bronchoalveolar lavage contained primarily the G222 mutation and was mixed with a minor population of D222. These clinical isolates were compared to a G222 plaque purified virus in the ferret model. The G222 predominant clinical isolate was the most pathogenic in ferrets and developed the most diversity at the 222 amino acid position during infection, suggesting that increased diversity and not a specific polymorphism at HA 222 may be important in predicting pathogenic potential

    Three-dimensional simulations of gravitationally confined detonations compared to observations of SN 1991T

    Get PDF
    The gravitationally confined detonation (GCD) model has been proposed as a possible explosion mechanism for Type Ia supernovae in the single-degenerate evolution channel. Driven by buoyancy, a deflagration flame rises in a narrow cone towards the surface. For the most part, the flow of the expanding ashes remains radial, but upon reaching the outer, low-pressure layers of the white dwarf, an additional lateral component develops. This makes the deflagration ashes converge again at the opposite side, where the compression heats fuel and a detonation may be launched. To test the GCD explosion model, we perform a 3D simulation for a model with an ignition spot offset near the upper limit of what is still justifiable, 200 km. This simulation meets our deliberately optimistic detonation criteria and we initiate a detonation. The detonation burns through the white dwarf and leads to its complete disruption. We determine nucleosynthetic yields by post-processing 10^6 tracer particles with a 384 nuclide reaction network and we present multi-band light curves and time-dependent optical spectra. We find that our synthetic observables show a prominent viewing-angle sensitivity in UV and blue bands, which is in tension with observed SNe Ia. The strong dependence on viewing-angle is caused by the asymmetric distribution of the deflagration ashes in the outer ejecta layers. Finally, we perform a comparison of our model to SN 1991T. The overall flux-level of the model is slightly too low and the model predicts pre-maximum light spectral features due to Ca, S, and Si that are too strong. Furthermore, the model chemical abundance stratification qualitatively disagrees with recent abundance tomography results in two key areas: our model lacks low velocity stable Fe and instead has copious amounts of high-velocity 56Ni and stable Fe. We therefore do not find good agreement of the model with SN 1991T.Comment: 11 pages, accepted for publication in Astronomy & Astrophysic

    Modelling the Type Ic SN 2004aw: a moderately energetic explosion of a massive C plus O star without a GRB

    Get PDF
    An analysis of the Type Ic supernova (SN) 2004aw is performed by means of models of the photospheric and nebular spectra and of the bolometric light curve. SN 2004aw is shown not to be ‘broad-lined’, contrary to previous claims, but rather a ‘fast-lined’ SN Ic. The spectral resemblance to the narrow-lined Type Ic SN 1994I, combined with the strong nebular [O I] emission and the broad light curve, points to a moderately energetic explosion of a massive C+O star. The ejected 56Ni mass is ≈0.20 M⊙. The ejecta mass as constrained by the models is ∌3–5 M⊙, while the kinetic energy is estimated as EK ∌3–6 × 1051 erg. The ratio EK/M⊙, the specific energy that influences the shape of the spectrum, is therefore ≈1. The corresponding zero-age main-sequence mass of the progenitor star may have been ∌23–28 M⊙. Tests show that a flatter outer density structure may have caused a broad-lined spectrum at epochs before those observed without affecting the later epochs when data are available, implying that our estimate of EK is a lower limit. SN 2004aw may have been powered by either a collapsar or a magnetar, both of which have been proposed for gamma-ray burst SNe. Evidence for this is seen in the innermost layers, which appear to be highly aspherical as suggested by the nebular line profiles. However, any engine was not extremely powerful, as the outer ejecta are more consistent with a spherical explosion and no gamma-ray burst was detected in coincidence with SN 2004aw

    Optical quantification of intracellular mass density and cell mechanics in 3D mechanical confinement

    Get PDF
    Biophysical properties of cells such as intracellular mass density and cell mechanics are known to be involved in a wide range of homeostatic functions and pathological alterations. An optical readout that can be used to quantify such properties is the refractive index (RI) distribution. It has been recently reported that the nucleus, initially presumed to be the organelle with the highest dry mass density (ρ) within the cell, has in fact a lower RI and ρ than its surrounding cytoplasm. These studies have either been conducted in suspended cells, or cells adhered on 2D substrates, neither of which reflects the situation in vivo where cells are surrounded by the extracellular matrix (ECM). To better approximate the 3D situation, we encapsulated cells in 3D covalently-crosslinked alginate hydrogels with varying stiffness, and imaged the 3D RI distribution of cells, using a combined optical diffraction tomography (ODT)-epifluorescence microscope. Unexpectedly, the nuclei of cells in 3D displayed a higher ρ than the cytoplasm, in contrast to 2D cultures. Using a Brillouin-epifluorescence microscope we subsequently showed that in addition to higher ρ, the nuclei also had a higher longitudinal modulus (M) and viscosity (η) compared to the cytoplasm. Furthermore, increasing the stiffness of the hydrogel resulted in higher M for both the nuclei and cytoplasm of cells in stiff 3D alginate compared to cells in compliant 3D alginate. The ability to quantify intracellular biophysical properties with non-invasive techniques will improve our understanding of biological processes such as dormancy, apoptosis, cell growth or stem cell differentiation. <br
    • 

    corecore