1,027 research outputs found

    Towards quantitative prediction of proteasomal digestion patterns of proteins

    Full text link
    We discuss the problem of proteasomal degradation of proteins. Though proteasomes are important for all aspects of the cellular metabolism, some details of the physical mechanism of the process remain unknown. We introduce a stochastic model of the proteasomal degradation of proteins, which accounts for the protein translocation and the topology of the positioning of cleavage centers of a proteasome from first principles. For this model we develop the mathematical description based on a master-equation and techniques for reconstruction of the cleavage specificity inherent to proteins and the proteasomal translocation rates, which are a property of the proteasome specie, from mass spectroscopy data on digestion patterns. With these properties determined, one can quantitatively predict digestion patterns for new experimental set-ups. Additionally we design an experimental set-up for a synthetic polypeptide with a periodic sequence of amino acids, which enables especially reliable determination of translocation rates.Comment: 14 pages, 4 figures, submitted to J. Stat. Mech. (Special issue for proceedings of 5th Intl. Conf. on Unsolved Problems on Noise and Fluctuations in Physics, Biology & High Technology, Lyon (France), June 2-6, 2008

    Magnetic state of plutonium ion in metallic Pu and its compounds

    Full text link
    By LDA+U method with spin-orbit coupling (LDA+U+SO) the magnetic state and electronic structure have been investigated for plutonium in \delta and \alpha phases and for Pu compounds: PuN, PuCoGa5, PuRh2, PuSi2, PuTe, and PuSb. For metallic plutonium in both phases in agreement with experiment a nonmagnetic ground state was found with Pu ions in f^6 configuration with zero values of spin, orbital, and total moments. This result is determined by a strong spin-orbit coupling in 5f shell that gives in LDA calculation a pronounced splitting of 5f states on f^{5/2} and f^{7/2} subbands. A Fermi level is in a pseudogap between them, so that f^{5/2} subshell is already nearly completely filled with six electrons before Coulomb correlation effects were taken into account. The competition between spin-orbit coupling and exchange (Hund) interaction (favoring magnetic ground state) in 5f shell is so delicately balanced, that a small increase (less than 15%) of exchange interaction parameter value from J_H=0.48eV obtained in constrain LDA calculation would result in a magnetic ground state with nonzero spin and orbital moment values. For Pu compounds investigated in the present work, predominantly f^6 configuration with nonzero magnetic moments was found in PuCoGa5, PuSi2, and PuTe, while PuN, PuRh2, and PuSb have f^5 configuration with sizeable magnetic moment values. Whereas pure jj coupling scheme was found to be valid for metallic plutonium, intermediate coupling scheme is needed to describe 5f shell in Pu compounds. The results of our calculations show that both spin-orbit coupling and exchange interaction terms in the Hamiltonian must be treated in a general matrix form for Pu and its compounds.Comment: 20 pages, LaTeX; changed discussion on reference pape

    Alterations of immune response of non-small lung cancer with azacytidine

    Get PDF
    Innovative therapies are needed for advanced Non-Small Cell Lung Cancer (NSCLC). We have undertaken a genomics based, hypothesis driving, approach to query an emerging potential that epigenetic therapy may sensitize to immune checkpoint therapy targeting PD-L1/PD-1 interaction. NSCLC cell lines were treated with the DNA hypomethylating agent azacytidine (AZA - Vidaza) and genes and pathways altered were mapped by genome-wide expression and DNA methylation analyses. AZA-induced pathways were analyzed in The Cancer Genome Atlas (TCGA) project by mapping the derived gene signatures in hundreds of lung adeno (LUAD) and squamous cell carcinoma (LUSC) samples. AZA up-regulates genes and pathways related to both innate and adaptive immunity and genes related to immune evasion in a several NSCLC lines. DNA hypermethylation and low expression of IRF7, an interferon transcription factor, tracks with this signature particularly in LUSC. In concert with these events, AZA up-regulates PD-L1 transcripts and protein, a key ligand-mediator of immune tolerance. Analysis of TCGA samples demonstrates that a significant proportion of primary NSCLC have low expression of AZA-induced immune genes, including PD-L1. We hypothesize that epigenetic therapy combined with blockade of immune checkpoints - in particular the PD-1/PD-L1 pathway - may augment response of NSCLC by shifting the balance between immune activation and immune inhibition, particularly in a subset of NSCLC with low expression of these pathways. Our studies define a biomarker strategy for response in a recently initiated trial to examine the potential of epigenetic therapy to sensitize patients with NSCLC to PD-1 immune checkpoint blockade

    Plasma hepcidin levels are elevated but responsive to erythropoietin therapy in renal disease

    Get PDF
    Hepcidin is a critical inhibitor of iron export from macrophages, enterocytes, and hepatocytes. Given that it is filtered and degraded by the kidney, its elevated levels in renal failure have been suggested to play a role in the disordered iron metabolism of uremia, including erythropoietin resistance. Here, we used a novel radioimmunoassay for hepcidin-25, the active form of the hormone, to measure its levels in renal disease. There was a significant diurnal variation of hepcidin and a strong correlation to ferritin levels in normal volunteers. In 44 patients with mild to moderate kidney disease, hepcidin levels were significantly elevated, positively correlated with ferritin but inversely correlated with the estimated glomerular filtration rate. In 94 stable hemodialysis patients, hepcidin levels were also significantly elevated, but this did not correlate with interleukin-6 levels, suggesting that increased hepcidin was not due to a general inflammatory state. Elevated hepcidin was associated with anemia, but, intriguingly, the erythropoietin dose was negatively correlated with hepcidin, suggesting that erythropoietin suppresses hepcidin levels. This was confirmed in 7 patients when hepcidin levels significantly decreased after initiation of erythropoietin treatment. Our results show that hepcidin is elevated in renal disease and suggest that higher hepcidin levels do not predict increased erythropoietin requirements

    Using Strategic Movement to Calibrate a Neural Compass: A Spiking Network for Tracking Head Direction in Rats and Robots

    Get PDF
    The head direction (HD) system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular) inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that ‘grounding’ of modelled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology), and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex

    Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes

    Get PDF
    Proteasome-catalyzed peptide splicing represents an additional catalytic activity of proteasomes contributing to the pool of MHC-class I-presented epitopes. We here biochemically and functionally characterized a new melanoma gp100 derived spliced epitope. We demonstrate that the gp100mel47–52/40–42 antigenic peptide is generated in vitro and in cellulo by a not yet described proteasomal condensation reaction. gp100mel47–52/40–42 generation is enhanced in the presence of the β5i/LMP7 proteasome-subunit and elicits a peptide- specific CD8+ T cell response. Importantly, we demonstrate that different gp100mel-derived spliced epitopes are generated and presented to CD8+ T cells with efficacies comparable to non-spliced canonical tumor epitopes and that gp100mel-derived spliced epitopes trigger activation of CD8+ T cells found in peripheral blood of half of the melanoma patients tested. Our data suggest that both transpeptidation and condensation reactions contribute to the frequent generation of spliced epitopes also in vivo and that their immune relevance may be comparable to non-spliced epitopes

    Hydrogen storage systems from waste Mg alloys

    Get PDF
    The production cost of materials for hydrogen storage is one of the major issues to be addressed in order to consider them suitable for large scale applications. In the last decades several authors reported on the hydrogen sorption properties of Mg and Mg-based systems. In this work magnesium industrial wastes of AZ91 alloy and Mg-10 wt.% Gd alloy are used for the production of hydrogen storage materials. The hydrogen sorption properties of the alloys were investigated by means of volumetric technique, in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and calorimetric methods. The measured reversible hydrogen storage capacity for the alloys AZ91 and Mg-10 wt.% Gd are 4.2 and 5.8 wt.%, respectively. For the Mg-10 wt.% Gd alloy, the hydrogenated product was also successfully used as starting reactant for the synthesis of Mg(NH2)2 and as MgH2 substitute in the Reactive Hydride Composite (RHC) 2LiBH4 + MgH 2. The results of this work demonstrate the concrete possibility to use Mg alloy wastes for hydrogen storage purposes
    • …
    corecore