We discuss the problem of proteasomal degradation of proteins. Though
proteasomes are important for all aspects of the cellular metabolism, some
details of the physical mechanism of the process remain unknown. We introduce a
stochastic model of the proteasomal degradation of proteins, which accounts for
the protein translocation and the topology of the positioning of cleavage
centers of a proteasome from first principles. For this model we develop the
mathematical description based on a master-equation and techniques for
reconstruction of the cleavage specificity inherent to proteins and the
proteasomal translocation rates, which are a property of the proteasome specie,
from mass spectroscopy data on digestion patterns. With these properties
determined, one can quantitatively predict digestion patterns for new
experimental set-ups. Additionally we design an experimental set-up for a
synthetic polypeptide with a periodic sequence of amino acids, which enables
especially reliable determination of translocation rates.Comment: 14 pages, 4 figures, submitted to J. Stat. Mech. (Special issue for
proceedings of 5th Intl. Conf. on Unsolved Problems on Noise and Fluctuations
in Physics, Biology & High Technology, Lyon (France), June 2-6, 2008