117 research outputs found

    Glibenclamide prevents increased extracellular matrix formation induced by high glucose concentration in mesangial cells

    Get PDF
    Other than stimulation of cell contractility, little is known about the potential metabolic effects induced by sulfonylureas, independently of insulin action. Previous studies from our laboratory demonstrated complete abrogation of glomerulosclerosis in an experimental model of type 1 diabetes chronically (9 mo) treated with low-dose sulfonylureas (Biederman JI, Vera E, Pankhaniya R, Hassett C, Giannico G, Yee J, Cortes P. Kidney Int 67: 554-565, 2005). Therefore, the effects of glibenclamide (Glib) on net collagen I, collagen IV, and fibronectin medium net secretion and cell layer collagen I deposition were investigated in mesangial cells continuously exposed to 25 mM glucose for 8 wk and treated with predetermined increasing concentrations of Glib for the same period. Clinically relevant concentrations (0.01 μM) of Glib fully suppressed the high glucose-enhanced accumulation of collagen I, collagen IV, and fibronectin in the medium and inhibited collagen I deposition in the cell layer. These effects occurred while transforming growth factor (TGF)-β1 medium concentration remained elevated and glucose uptake was increased to levels above those in 25 mM glucose-incubated cultures. The decreased collagen I accumulation occurred simultaneously with enhanced collagen I mRNA expression in concert with marked suppression of plasminogen inhibitor type-1 (PAI-1) mRNA and protein expression. This strongly suggests an accelerated matrix turnover favoring breakdown. Glib-induced effects demonstrated a biphasic pattern, being absent or reversed in cells treated with higher Glib concentrations (0.1 or 1 μM). Therefore, chronic Glib treatment at low concentrations markedly diminishes the high glucose-induced enhanced accumulation of extracellular matrix components by suppression of steady-state PAI-1 transcriptional activity. These results and those previously reported in vivo suggest that long-term Glib treatment may prevent glomerulosclerosis in insulin-deficient diabetes. Copyright © 2007 the American Physiological Society

    Plasma hepcidin levels are elevated but responsive to erythropoietin therapy in renal disease

    Get PDF
    Hepcidin is a critical inhibitor of iron export from macrophages, enterocytes, and hepatocytes. Given that it is filtered and degraded by the kidney, its elevated levels in renal failure have been suggested to play a role in the disordered iron metabolism of uremia, including erythropoietin resistance. Here, we used a novel radioimmunoassay for hepcidin-25, the active form of the hormone, to measure its levels in renal disease. There was a significant diurnal variation of hepcidin and a strong correlation to ferritin levels in normal volunteers. In 44 patients with mild to moderate kidney disease, hepcidin levels were significantly elevated, positively correlated with ferritin but inversely correlated with the estimated glomerular filtration rate. In 94 stable hemodialysis patients, hepcidin levels were also significantly elevated, but this did not correlate with interleukin-6 levels, suggesting that increased hepcidin was not due to a general inflammatory state. Elevated hepcidin was associated with anemia, but, intriguingly, the erythropoietin dose was negatively correlated with hepcidin, suggesting that erythropoietin suppresses hepcidin levels. This was confirmed in 7 patients when hepcidin levels significantly decreased after initiation of erythropoietin treatment. Our results show that hepcidin is elevated in renal disease and suggest that higher hepcidin levels do not predict increased erythropoietin requirements

    American Society of Clinical Oncology/College ofAmerican Pathologists guideline recommendations forimmunohistochemical testing of estrogen andprogesterone receptors in breast cancer

    Get PDF
    Purpose: To develop a guideline to improve theaccuracy of immunohistochemical (IHC) estrogen receptor(ER) and progesterone receptor (PgR) testing in breastcancer and the utility of these receptors as predictivemarkers.Methods: The American Society of Clinical Oncologyand the College of American Pathologists convened aninternational Expert Panel that conducted a systematicreview and evaluation of the literature in partnership withCancer Care Ontario and developed recommendations foroptimal IHC ER/PgR testing performance.Results: Up to 20% of current IHC determinations ofER and PgR testing worldwide may be inaccurate (falsenegative or false positive). Most of the issues with testinghave occurred because of variation in preanalyticvariables, thresholds for positivity, and interpretationcriteria.Recommendations: The Panel recommends that ER andPgR status be determined on all invasive breast cancers andbreast cancer recurrences. A testing algorithm that relieson accurate, reproducible assay performance is proposed.Elements to reliably reduce assay variation are specified. It is recommended that ER and PgR assays be consideredpositive if there are at least 1% positive tumor nuclei in the sample on testing in the presence of expected reactivity of internal (normal epithelial elements) and external controls. The absence of benefit from endocrine therapy for women with ER-negative invasive breast cancers has been confirmed in large overviews of randomized clinical trials.(Arch Pathol Lab Med. 2010;134:907–922

    Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.

    Get PDF
    The genomes of cancers deficient in mismatch repair contain exceptionally high numbers of somatic mutations. In a proof-of-concept study, we previously showed that colorectal cancers with mismatch repair deficiency were sensitive to immune checkpoint blockade with antibodies to programmed death receptor-1 (PD-1). We have now expanded this study to evaluate the efficacy of PD-1 blockade in patients with advanced mismatch repair-deficient cancers across 12 different tumor types. Objective radiographic responses were observed in 53% of patients, and complete responses were achieved in 21% of patients. Responses were durable, with median progression-free survival and overall survival still not reached. Functional analysis in a responding patient demonstrated rapid in vivo expansion of neoantigen-specific T cell clones that were reactive to mutant neopeptides found in the tumor. These data support the hypothesis that the large proportion of mutant neoantigens in mismatch repair-deficient cancers make them sensitive to immune checkpoint blockade, regardless of the cancers\u27 tissue of origin

    Future perspectives in melanoma research: meeting report from the "Melanoma Bridge";: Napoli, December 3rd-6th 2014.

    Get PDF
    The fourth "Melanoma Bridge Meeting" took place in Naples, December 3-6th, 2014. The four topics discussed at this meeting were: Molecular and Immunological Advances, Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers. Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent advances in tumor biology and immunology have led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors as well as other signaling pathway inhibitors, are being tested in patients with metastatic melanoma either as monotherapy or in combination, and all have yielded promising results. These include inhibitors of receptor tyrosine kinases (BRAF, MEK, and VEGFR), the phosphatidylinositol 3 kinase (PI3K) pathway [PI3K, AKT, mammalian target of rapamycin (mTOR)], activators of apoptotic pathway, and the cell cycle inhibitors (CDK4/6). Various locoregional interventions including radiotherapy and surgery are still valid approaches in treatment of advanced melanoma that can be integrated with novel therapies. Intrinsic, adaptive and acquired resistance occur with targeted therapy such as BRAF inhibitors, where most responses are short-lived. Given that the reactivation of the MAPK pathway through several distinct mechanisms is responsible for the majority of acquired resistance, it is logical to combine BRAF inhibitors with inhibitors of targets downstream in the MAPK pathway. For example, combination of BRAF/MEK inhibitors (e.g., dabrafenib/trametinib) have been demonstrated to improve survival compared to monotherapy. Application of novel technologies such sequencing have proven useful as a tool for identification of MAPK pathway-alternative resistance mechanism and designing other combinatorial therapies such as those between BRAF and AKT inhibitors. Improved survival rates have also been observed with immune-targeted therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in patients with melanoma as well. These agents are being studied in combination with targeted therapies in attempt to produce longer-term responses than those more typically seen with targeted therapy. Other combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for this patient population. This meeting's specific focus was on advances in combination of targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma

    Breast cancer epithelial-to-mesenchymal transition: examining the functional consequences of plasticity

    Get PDF
    The epithelial-to-mesenchymal transition (EMT) is a critical developmental process that has recently come to the forefront of cancer biology. In breast carcinomas, acquisition of a mesenchymal-like phenotype that is reminiscent of an EMT, termed oncogenic EMT, is associated with pro-metastatic properties, including increased motility, invasion, anoikis resistance, immunosuppression and cancer stem cell characteristics. This oncogenic EMT is a consequence of cellular plasticity, which allows for interconversion between epithelial and mesenchymal-like states, and is thought to enable tumor cells not only to escape from the primary tumor, but also to colonize a secondary site. Indeed, the plasticity of cancer cells may explain the range of pro-metastatic traits conferred by oncogenic EMT, such as the recently described link between EMT and cancer stem cells and/or therapeutic resistance. Continued research into this relationship will be critical in developing drugs that block mechanisms of breast cancer progression, ultimately improving patient outcomes

    Future perspectives in melanoma research: meeting report from the “Melanoma Bridge”: Napoli, December 3rd–6th 2014

    Full text link

    Hippocampal synaptic plasticity, spatial memory and anxiety

    Full text link
    corecore