7 research outputs found

    Fanny Copeland and the geographical imagination

    Get PDF
    Raised in Scotland, married and divorced in the English south, an adopted Slovene, Fanny Copeland (1872 – 1970) occupied the intersection of a number of complex spatial and temporal conjunctures. A Slavophile, she played a part in the formation of what subsequently became the Kingdom of Yugoslavia that emerged from the First World War. Living in Ljubljana, she facilitated the first ‘foreign visit’ (in 1932) of the newly formed Le Play Society (a precursor of the Institute of British Geographers) and guided its studies of Solčava (a then ‘remote’ Alpine valley system) which, led by Dudley Stamp and commended by Halford Mackinder, were subsequently hailed as a model for regional studies elsewhere. Arrested by the Gestapo and interned in Italy during the Second World War, she eventually returned to a socialist Yugoslavia, a celebrated figure. An accomplished musician, linguist, and mountaineer, she became an authority on (and populist for) the Julian Alps and was instrumental in the establishment of the Triglav National Park. Copeland’s role as participant observer (and protagonist) enriches our understanding of the particularities of her time and place and illuminates some inter-war relationships within G/geography, inside and outside the academy, suggesting their relative autonomy in the production of geographical knowledge

    Mutations in DDX3X are a common cause of unexplained intellectual disability with gender-specific effects on wnt signaling

    Get PDF
    Intellectual disability (ID) affects approximately 1%–3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%–3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations

    Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling

    No full text
    Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations

    Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling

    No full text
    Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations.publisher: Elsevier articletitle: Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling journaltitle: The American Journal of Human Genetics articlelink: http://dx.doi.org/10.1016/j.ajhg.2015.07.004 content_type: article copyright: Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.status: publishe
    corecore