35 research outputs found

    Effects of preemptive analgesia with intravenous acetaminophen on postoperative pain relief in patients undergoing third molar surgery:a prospective, single-blind, randomized controlled trial

    Get PDF
    The efficacy of preemptive analgesia in managing postoperative pain remains controversial. The aim of this study was to compare the efficacy of intravenous (IV) acetaminophen administered before or immediately after the surgical extraction of an impacted mandibular third molar. This prospective randomized clinical trial included 120 patients. The patients were assigned to one of three groups: the preoperative-treatment group (pre-group), which received 1000 mg of IV acetaminophen 20 min before surgery; the postoperative-treatment group (post-group), which received 1000 mg of IV acetaminophen after surgery; the no-treatment group (control-group), which did not receive any analgesic. Rescue analgesic (60 mg loxoprofen) was issued to each patient, with instructions on self-administration if needed. For the rescue medication usage, the time of first loxoprofen usage and the total amount of loxoprofen consumption were obtained for a 17-hour period after surgery. We measured pain using the visual analogue scale at 1 hour and at 2, 3, 4, 5, and 15 hours after surgery. There was no significant difference in pain level among the three groups at any time interval. However, the pre-group demonstrated significantly lower rescue analgesic consumption and longer time until initial administration. Administration of IV acetaminophen before third molar surgery provides more effective pain control than postoperative administration and no treatment

    Nasal double DNA adjuvant induces salivary FimA-specific secretory IgA antibodies in young and aging mice and blocks Porphyromonas gingivalis binding to a salivary protein

    Get PDF
    Background: We previously showed that nasal administration of a combination of dendritic cell (DC) targeted DNA plasmid expressing Flt3 ligand and CpG oligodeoxynucleotides 1826 as a mucosal adjuvant (double adjuvant, DA) provoked protective immunity in the upper respiratory tract of young adult and aging mice. Here, we investigated whether the nasal DA system induces secretory (S)IgA antibodies (Abs) toward recombinant fimbrillin (rFimA) of Porphyromonas gingivalis (P. gingivalis) in the saliva of young adult and aging mice. Further, we examined the functional applicability of rFimA-specific salivary SIgA Abs. Methods: BALB/c mice (8- or 48-week-old) were nasally immunized with rFimA plus DA three times at weekly intervals. Control mice were nasally administered rFimA alone. Saliva samples were collected 1 week after the final immunization, and were subjected to rFimA-specific ELISA. To examine the functional applicability of rFimA-specific SIgA Abs, IgA-enriched saliva samples were subjected to an inhibition assay in order to assess the numbers of P. gingivalis cells bound to the salivary protein statherin. Results: The 8- and 48-week-old mice administered nasal rFimA plus DA showed significantly increased levels of rFimA-specific SIgA Abs in saliva and elevated numbers of CD11c+ DCs in sublingual glands (SLGs), periglandular lymph nodes (PGLNs) and submandibular glands (SMGs) as well as nasopharyngeal-associated lymphoid tissues (NALT) compared to mice administered rFimA alone. Further, rFimA-specific SIgA Abs-containing saliva, in which IgG Abs of 8- and 48-week-old mice administered nasal rFimA plus DA were removed, significantly inhibited binding of P. gingivalis to the salivary protein. Conclusions: These findings show that this DA system could be an effective nasal vaccine strategy for the enhancement of P. gingivalis-specific protective immunity in the oral cavity of adolescents and older individuals

    A nasal double DNA adjuvant system induces atheroprotective IgM antibodies via dendritic cell-B-1a B cell interactions

    Get PDF
    We previously demonstrated that the dendritic cell (DC)-targeting nasal double DNA adjuvant system, which consists of a DNA plasmid expressing Flt3 ligand (pFL) and CpG oligodeoxynucleotide 1826 (CpG ODN), elicits specific immune responses to various antigens in the mucosal and systemic compartments. Here, we investigated, using phosphorylcholine (PC)-conjugated keyhole limpet hemocyanin (PC-KLH) as an antigen, whether the nasal double DNA adjuvant system induces protective immunity to atherosclerosis in apolipoprotein E-deficient (ApoE KO) mice. Further, we assessed the molecular and cellular mechanisms in the induction of anti-PC-specific immune responses. Nasal immunization with PC-KLH plus pFL and CpG ODN enhanced induction of PC-specific IgM in plasma, peritoneal fluids, and nasal washes when compared with mice administered PC-KLH alone. Of importance, these antibodies exhibited highly specific binding to the PC molecule, and dose-dependent binding to anti-T15 idiotype (AB1-2). Twelve weeks after the last immunization, the nasal double DNA adjuvant system with PC-KLH resulted in a reduction of atherogenesis in the aortic arch of ApoE KO mice. Therefore, we next assessed immunocytological mechanism to induce these antibodies. The nasal double DNA adjuvant system with PC-KLH resulted not only in significantly increased frequencies of CD11c+ DCs in the spleen, peritoneal cavity (PEC), and nasopharyngeal-associated lymphoid tissues (NALT), but also significantly increased expression of a proliferation-inducing ligand and B-cell-activating factor by CD11c+ DCs. In addition, the double DNA adjuvant system induced significantly increased numbers of B-1 B cells in the spleen, PEC, and NALT, and increased expression of transmembrane activator and calcium modulator and cyclophilin ligand interactor on CD5+ B220+ (B-1a) B cells. These findings demonstrated that the nasal double DNA adjuvant system with PC-KLH resulted in the induction of T15-like antibodies in the mucosal and systemic lymphoid tissues through interaction between DCs and B-1a B cells, and inhibited the progression of atherogenesis

    Human salivary protein-derived peptides specific-salivary SIgA antibodies enhanced by nasal double DNA adjuvant in mice play an essential role in preventing Porphyromonas gingivalis colonization : an in-vitro study

    Get PDF
    Background: We previously showed that fimbriae-bore from Poryphyromonas gingivalis (Pg), one of the putative periodontopathogenic bacteria specifically bound to a peptide domain (stat23, prp21) shared on statherin or acidic proline-rich protein 1 (PRP1) molecule of human salivary proteins (HSPs). Here, we investigated whether the nasal administration of DNA plasmid expressing Flt3 ligand (pFL) and CpG oligodeoxynucleotide 1826 as double DNA adjuvant (dDA) with stat23 and prpr21 induces antigen (Ag)-specific salivary secretory IgA (SIgA) antibodies (Abs) in mice. Further, we examined that stat23- and prpr21-specific salivary SIgA Abs induced by dDA have an impact on Pg-binding to human whole saliva-coated hydroxyapatite beads (wsHAPs). Material and methods: C57BL/6N mice were nasally immunized with dDA plus sta23 or/and prp21 peptide as Ag four times at weekly intervals. Saliva was collected one week after the final immunization and was subjected to Ag-specific ELISA. To examine the functional applicability of Ag-specific SIgA Abs, SIgA-enriched saliva samples were subjected to Pg binding inhibition assay to wsHAPs. Results: Significantly elevated levels of salivary SIgA Ab to stat23 or prp21 were seen in mice given nasal stat23 or prp21 with dDA compared to those in mice given Ag alone. Of interest, mice nasally given the mixture of stat23 and prp21 as double Ags plus dDA, resulted in both stat23- and prp21-specific salivary SIgA Ab responses, which are mediated through significantly increased numbers of CD11c+ dendritic cell populations and markedly elevated Th1 and Th2 cytokines production by CD4+ T cells in the mucosal inductive and effector tissues. The SIgA Ab-enriched saliva showed significantly reduced numbers of live Pg cells binding to wsHAPs as compared with those in mice given double Ags without dDA or naïve mice. Additionally, saliva from IgA-deficient mice given nasal double Ags plus dDA indicated no decrease of live Pg binding to wsHAPs. Conclusion: These findings show that HSP-derived peptides-specific salivary SIgA Abs induced by nasal administration of stat23 and prp21 peptides plus dDA, play an essential role in preventing Pg attachment and colonization on the surface of teeth, suggesting a potency that the SIgA may interrupt and mask fimbriae-binding domains in HSPs on the teeth

    DNA adjuvants for potent mucosal immunity

    Get PDF
    In order to develop safe vaccines for effective mucosal immunity to major pulmonary bacterial infections, one must consider appropriate vaccine antigens (Ags), delivery systems and nontoxic molecular adjuvants. Such vaccine constructs can induce Ag-specific immune responses which provide effective protection from mucosal infections. In particular, it has been shown that adjuvant-based mucosal vaccine preparations are relatively easy to construct by simply mixing the adjuvant with the bacterial Ag, and the resulting vaccine can elicit protective immunity. We have studied DNA-based nasal adjuvants targeting mucosal dendritic cells (DCs) in order to induce Ag-specific mucosal and systemic immune responses that provide essential protection against microbial pathogens which invade our mucosal surfaces. In this review, we initially introduce a plasmid encoding the cDNA of Flt3 ligand (pFL), a molecule which is a growth factor for DCs as an effective adjuvant for mucosal immunity to pneumococcal infections. Next, we discuss the potential of adding unmethylated CpG oligodeoxynucleotide together with pFL together with a pneumococcal Ag for protection from pneumococcal infections. To do this, we have used pneumococcal surface protein A as vaccine for the restoration of mucosal immunity in aging. Further, we have also used our nasal pFL adjuvant system with phosphorylcholine-keyhole limpet hemocyanin (PC-KLH) in pneumococcal vaccine development, to successfully induce complete protection from nasal carriage by Streptococcus pneumoniae. Finally, we discuss the possibility that anti-PC antibodies induced by nasal delivery of pFL plus PC-KLH may play a protective role for prevention of atherogenesis and thus block the subsequent development of cardiovascular disease

    Porphyromonas gingivalis Clearance by SIgA

    Get PDF
    Our previous studies showed that a combination of a DNA plasmid encoding Flt3 ligand (pFL) and CpG oligodeoxynucleotides 1826 (CpG ODN) (FL/CpG) as a nasal adjuvant provoked antigen-specific immune responses. In this study, we investigated the efficacy of a nasal vaccine consisting of FimA as the structural subunit of Porphyromonas gingivalis (P. gingivalis) fimbriae and FL/CpG for the induction of FimA-specific antibody (Ab) responses and their protective roles against nasal and lung infection by P. gingivalis, a keystone pathogen in the etiology of periodontal disease. C57BL/6 mice were nasally immunized with recombinant FimA (rFimA) plus FL/CpG three times at weekly intervals. As a control, mice were given nasal rFimA alone. Nasal washes (NWs) and bronchoalveolar lavage fluid (BALF) of mice given nasal rFimA plus FL/CpG resulted in increased levels of rFimA-specific secretory IgA (SIgA) and IgG Ab responses when compared with those in controls. Significantly increased numbers of CD8- or CD11b-expressing mature-type dendritic cells (DCs) were detected in the respiratory inductive and effector tissues of mice given rFimA plus FL/CpG. Additionally, significantly upregulated Th1/Th2-type cytokine responses by rFimA-stimulated CD4+ T cells were noted in the respiratory effector tissues. When mice were challenged with live P. gingivalis via the nasal route, mice immunized nasally with rFimA plus FL/CpG inhibited P. gingivalis colonization in the nasal cavities and lungs. In contrast, controls failed to show protection. Of interest, when IgA-deficient mice given nasal rFimA plus FL/CpG were challenged with nasal P. gingivalis, the inhibition of bacterial colonization in the respiratory tracts was not seen. Taken together, these results show that nasal FL/CpG effectively enhanced DCs and provided balanced Th1- and Th2-type cytokine response-mediated rFimA-specific IgA protective immunity in the respiratory tract against P. gingivalis. A nasal administration with rFimA and FL/CpG could be a candidate for potent mucosal vaccines for the elimination of inhaled P. gingivalis in periodontal patients

    Prognostic value of visceral pleural invasion in resected non–small cell lung cancer diagnosed by using a jet stream of saline solution

    Get PDF
    AbstractObjectiveVisceral pleural invasion caused by non–small cell lung cancer is a factor in the poor prognosis of patients with that disease. We investigated the relationship between the diagnosis of visceral pleural invasion by using a jet stream of saline solution, which was previously reported as a new cytologic method to more accurately detect the presence of visceral pleural invasion, and prognosis.MethodsFrom January 1992 through December 1998, 143 consecutive patients with peripheral non–small cell lung cancer that appeared to reach the visceral pleura underwent a surgical resection at the Department of Thoracic Oncology, National Kyushu Cancer Center. The surface of the visceral pleura in patients undergoing lung cancer resection was irrigated with a jet stream of saline solution. The diagnosis of visceral pleural invasion was determined by means of either a pathologic examination or by means of a jet stream of saline solution. In addition, a cytologic examination of the pleural lavage fluid obtained immediately after a thoracotomy was evaluated.ResultsForty-nine (34%) resected tumors were identified as having visceral pleural invasion. The diagnosis of visceral pleural invasion in 31, 6, and 12 patients was determined by using a jet stream of saline solution alone, pathologic examination alone, or both, respectively. The visceral pleural invasion and positive findings of intrapleural lavage cytology were linked. Although there was no significant difference between the incidence of distant metastases in the patients with visceral pleural invasion and those without visceral pleural invasion, the incidence of local recurrence, especially regarding carcinomatous pleuritis (malignant pleural effusion, pleural dissemination, or both), in the patients with visceral pleural invasion was significantly higher than in those without visceral pleural invasion. The recurrence-free survival of patients with visceral pleural invasion was significantly shorter than that of patients without visceral pleural invasion (P = .004), even patients with stage I disease (P = .02). There was also a significant difference between the patients with or without visceral pleural invasion in the overall survival (P = .02). Visceral pleural invasion was independently associated with a poor recurrence-free survival on the basis of multivariate analyses (P = .03), as were sex (P = .03), age (P = 002), and the stage of the disease (P < .0001).ConclusionsThis study confirmed that the jet stream of saline solution method in addition to ordinary pathologic examination was useful for detecting visceral pleural invasion, which is considered to be one of the causes of local recurrence, especially in carcinomatous pleuritis

    De Novo Mutations in GNAO1, Encoding a Gαo Subunit of Heterotrimeric G Proteins, Cause Epileptic Encephalopathy

    Get PDF
    Heterotrimeric G proteins, composed of α, β, and γ subunits, can transduce a variety of signals from seven-transmembrane-type receptors to intracellular effectors. By whole-exome sequencing and subsequent mutation screening, we identified de novo heterozygous mutations in GNAO1, which encodes a Gαo subunit of heterotrimeric G proteins, in four individuals with epileptic encephalopathy. Two of the affected individuals also showed involuntary movements. Somatic mosaicism (approximately 35% to 50% of cells, distributed across multiple cell types, harbored the mutation) was shown in one individual. By mapping the mutation onto three-dimensional models of the Gα subunit in three different complexed states, we found that the three mutants (c.521A>G [p.Asp174Gly], c.836T>A [p.Ile279Asn], and c.572_592del [p.Thr191_Phe197del]) are predicted to destabilize the Gα subunit fold. A fourth mutant (c.607G>A), in which the Gly203 residue located within the highly conserved switch II region is substituted to Arg, is predicted to impair GTP binding and/or activation of downstream effectors, although the p.Gly203Arg substitution might not interfere with Gα binding to G-protein-coupled receptors. Transient-expression experiments suggested that localization to the plasma membrane was variably impaired in the three putatively destabilized mutants. Electrophysiological analysis showed that Gαo-mediated inhibition of calcium currents by norepinephrine tended to be lower in three of the four Gαo mutants. These data suggest that aberrant Gαo signaling can cause multiple neurodevelopmental phenotypes, including epileptic encephalopathy and involuntary movements

    Molecular karyotyping in 17 patients and mutation screening in 41 patients with Kabuki syndrome.

    Get PDF
    The Kabuki syndrome (KS, OMIM 147920), also known as the Niikawa-Kuroki syndrome, is a multiple congenital anomaly/mental retardation syndrome characterized by a distinct facial appearance. The cause of KS has been unidentified, even by whole-genome scan with array comparative genomic hybridization (CGH). In recent years, high-resolution oligonucleotide array technologies have enabled us to detect fine copy number alterations. In 17 patients with KS, molecular karyotyping was carried out with GeneChip 250K NspI array (Affymetrix) and Copy Number Analyser for GeneChip (CNAG). It showed seven copy number alterations, three deleted regions and four duplicated regions among the patients, with the exception of registered copy number variants (CNVs). Among the seven loci, only the region of 9q21.11-q21.12 ( approximately 1.27 Mb) involved coding genes, namely, transient receptor potential cation channel, subfamily M, member 3 (TRPM3), Kruppel-like factor 9 (KLF9), structural maintenance of chromosomes protein 5 (SMC5) and MAM domain containing 2 (MAMDC2). Mutation screening for the genes detected 10 base substitutions consisting of seven single-nucleotide polymorphisms (SNPs) and three silent mutations in 41 patients with KS. Our study could not show the causative genes for KS, but the locus of 9q21.11-q21.12, in association with a cleft palate, may contribute to the manifestation of KS in the patient. As various platforms on oligonucleotide arrays have been developed, higher resolution platforms will need to be applied to search tiny genomic rearrangements in patients with KS.Journal of Human Genetics (2009) 54, 304-309; doi:10.1038/jhg.2009.30; published online 03 April 2009
    corecore