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To the Editor: 

Cornelia de Lange syndrome (CdLS, OMIM #122470) is a multiple congenital 

anomaly syndrome characterized by dysmorphic facial features, hirsutism, severe 

growth and developmental delay, and malformed upper limbs [Jackson et al., 1993; 

Ireland et al., 1993].  The prevalence is estimated to be 1/10,000 [Opitz, 1985].  

Recently, two independent groups proved that CdLS is caused by NIPBL mutations 

[Tonkin et al., 2004; Krantz et al., 2004].  NIPBL consists of 47 exons and encodes 

delangin, a 2,804 amino-acid protein, from exon 2 to 47.   

We analyzed 15 Japanese sporadic patients (CdL 1-15) with typical CdLS 

features (Table I) and their parents after obtaining written informed consent.  All 

protocols in this study were approved by the Committee for the Ethical Issues on 

Human Genome and Gene analysis, Nagasaki University.  Clinical geneticists 

diagnosed these patients based on mental and growth retardation, and characteristic 

facial features.  Genomic DNA was extracted using a standard protocol.  Fourty-six 

coding exons (from exon 2 to 47) of NIPBL were amplified by PCR as described 

previously [Krantz et al., 2004] except for exons 4, 33, 37 and 41, of which primers 

were originally designed (available on request).  Sequence analysis was performed as 

described previously [Kurotaki et al. 2003]. 

We identified three novel nonsense mutations and one missense mutation in 
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NIPBL among the 15 Japanese patients examined: 1885C>T (R629X) (CdL 4) and 

1921G>T (E641X) (CdL 2) in exon 10, 3346G>T (E1116X) (CdL 15) in exon 12 and 

5483G>A (R1828Q) (CdL 10) in exon 29.  All the four mutations were not found in 

any of 97 normal Japanese controls or in the JSNP database 

(http://snp.ims.u-tokyo.ac.jp/).  The altered amino acid (R1828Q) was de novo and 

located in the evolutionally conserved sequences at least in the human, rat, mouse and 

fly homologs, thus the change is likely to be pathological.   

The C-terminal half ~1500 amino acids of delangin is well conserved among 

homologs of flies, worms, plants, and fungi, and is expected to be biologically 

important [Tonkin et al., 2004], though it was not found to contain any obvious 

functional domains by analysis using PROSITE 

(http://kr.expasy.org/cgi-bin/prosite/PSScan.cgi).  Three protein truncation mutations at 

amino acid positions 629, 641 and 1116 and a missense mutation at amino acid position 

1828 could lose or impair the C-terminal half function.  The Drosophila homolog of 

NIPBL, Nipped-B, is involved in activating the Ubx and Cut homeobox genes.  Ubx 

suppresses the limb formation by repressing Dll that requires for the distal limb 

development, and Cut mutations cause leg and wing abnormalities [Tonkin et al., 2004].  

Thus, it is plausible that reduced expression of human NIPBL may lead to limb 
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anomalies in CdLS.   

Interestingly, limb abnormalities (oligodactyly and ulner deficiency) were 

observed in 3 of our 4 patients with a mutation, but only one of 7 patients without any 

mutation whose clinical information was available did show some limb abnormality 

(oligodactyly), though Gillis et al. [2004] reported that severity of limb defects was not 

statistically different between mutation-positive and mutation-negative patients.   

Additionally, three single nucleotide polymorphisms (SNPs), 1151A>G 

(N384S) in exon 9, 2021A>G (N674S) in exon 10 and 5874T>C (S1958S) in exon 33, 

were identified, as they were found among normal controls and the second substitution 

(2021A>G) was previously reported as a SNP [Gillis et al., 2004].  Allele frequencies 

of the three SNPs in normal Japanese controls are 3.2 % (6/186), 13.0 % (25/192) and 

64.5 % (129/200), respectively.  

To exclude a submicroscopic deletion around NIPBL and its franking regions, 

fluorescence in situ hybridization (FISH) analysis was performed in 10 of 15 cases on 

their metaphase chromosomes using 2 BAC clones covering the NIPBL gene (Table I), 

RP11-14I21 and RP11-7M4, selected from the UCSC genome browser, 2003 July 

version (http://genome.ucsc.edu/cgi-bin/hgGateway).  FISH and subsequent 

photomicroscopy were performed as described previously [Miyake et al., 2004].    
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However none of them showed any deletion. 

We also investigated core promoter regions in 11 affected individuals not 

having detectable point mutations in the coding regions.  Two core promoter regions 

were identified, raging -800 to -500bp (CPR-A) and -400 to +200bp (CPR-B) from the 

beginning of NIPBL cDNA (NM_015384.3) using four different promoter prediction 

programs: neural network promoter prediction program 

(http://www.fruitfly.org/seq_tools/promoter.html), human core-promoter finder 

(http://rulai.cshl.org/tools/genefinder/CPROMOTER/human.htm), promoter 2.0 

prediction server (http://www.cbs.dtu.dk/services/promoter/), bioinformatics & 

molecular analysis section (http://bimas.dcrt.nih.gov/molbio/proscan/).  No nucleotide 

changes were detected among the 11 patients in the two core promoter regions except 

for a part of CPR-B sequence (-60~+60) which was hardly determined due to high GC 

ratio (75.83 %), suggesting that promoter mutations in NIBPL is less likely. 

In conclusion, we identified four novel NIPBL mutations and three SNPs.  It 

is important to describe a full spectrum of phenotype in more patients with positive 

mutations and establish comprehensive diagnostic criteria.   
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