2,274 research outputs found

    Novel Lifshitz point for chiral transition in the magnetic field

    Get PDF
    Based on the generalized Ginzburg-Landau theory, chiral phase transition is discussed in the presence of magnetic field. Considering the chiral density wave we show chiral anomaly gives rise to an inhomogeneous chiral phase for nonzero quark-number chemical potential. Novel Lifshitz point appears on the vanishing chemical potential line, which may be directly explored by the lattice QCD simulation.Comment: 4pages,2figure

    Finite-size effects at the hadron-quark transition and heavy hybrid stars

    Get PDF
    We study the role of finite-size effects at the hadron-quark phase transition in a new hybrid equation of state constructed from an ab-initio Br\"uckner-Hartree-Fock equation of state with the realistic Bonn-B potential for the hadronic phase and a covariant non-local Nambu--Jona-Lasinio model for the quark phase. We construct static hybrid star sequences and find that our model can support stable hybrid stars with an onset of quark matter below 2M2 M_\odot and a maximum mass above 2.17M2.17 M_\odot in agreement with recent observations. If the finite-size effects are taken into account the core is composed of pure quark matter. Provided that the quark vector channel interaction is small, and the finite size effects are taken into account, quark matter appears at densities 2-3 times the nuclear saturation density. In that case the proton fraction in the hadronic phase remains below the value required by the onset of the direct URCA process, so that the early onset of quark matter shall affect on the rapid cooling of the star.Comment: version to match the one published in PR

    Multi-antikaonic nuclei in the relativistic mean-field theory

    Full text link
    Properties of multi-antikaonic nuclei (MKN), where several numbers of KK^- mesons are bound, are studied in the relativistic mean-field model, combined with chiral dynamics for kaonic part of the thermodynamic potential. The density profiles for nucleons and KK^- mesons, the single particle energy of the KK^- mesons, and binding energy of the MKN are obtained. The effects of the KˉKˉ\bar K-\bar K interactions on these quantities are discussed in comparison with other meson (σ\sigma, ω\omega, and ρ\rho)-exchange models. It is shown that the KˉKˉ\bar K-\bar K interactions originate from two contributions: One is the contact interaction between antikaons inherent in chiral symmetry, and the other is the one generated through coupling between the KK^- and meson mean fields. Both effects of the KˉKˉ\bar K-\bar K repulsive interactions become large on the ground state properties of the MKN as the number of the embedded KK^- mesons increases. A relation between the multi-antikaonic nuclei and kaon condensation in infinite and uniform matter is mentioned.Comment: 27 pages, 13 figure

    Neutrino Opacities in Neutron Stars with Kaon Condensates

    Get PDF
    The neutrino mean free paths in hot neutron-star matter are obtained in the presence of kaon condensates. The kaon-induced neutrino absorption process, which is allowed only in the presence of kaon condensates, is considered for both nondegenerate and degenerate neutrinos. The neutrino mean free path due to this process is compared with that for the neutrino-nucleon scattering. While the mean free path for the kaon-induced neutrino absorption process is shown to be shorter than the ordinary two-nucleon absorption process by several orders of magnitude when temperature is not very high, the neutrino-nucleon scattering process has still a dominant contribution to the neutrino opacity. Thus, the kaon-induced neutrino absorption process has a minor effect on the thermal and dynamical evolution of protoneutron stars.Comment: 35 pages, 4 figure

    Confronting Neutron Star Cooling Theories with New Observations

    Full text link
    With the successful launch of Chandra and XMM/Newton X-ray space missions combined with the lower-energy band observations, we are in the position where careful comparison of neutron star cooling theories with observations will make it possible to distinguish among various competing theories. For instance, the latest theoretical and observational developments already exclude both nucleon and kaon direct URCA cooling. In this way we can now have realistic hope for determining various important properties, such as the composition, degree of superfluidity, the equation of state and steller radius. These developments should help us obtain better insight into the properties of dense matter.Comment: 11 pages, 1 figur

    Hadron-quark mixed phase in hyperon stars

    Full text link
    We analyze the different possibilities for the hadron-quark phase transition occurring in beta-stable matter including hyperons in neutron stars. We use a Brueckner-Hartree-Fock approach including hyperons for the hadronic equation of state and a generalized MIT bag model for the quark part. We then point out in detail the differences between Maxwell and Gibbs phase transition constructions including the effects of surface tension and electromagnetic screening. We find only a small influence on the maximum neutron star mass, whereas the radius of the star and in particular its internal structure are more affected.Comment: 11 pages, 9 figure

    On Detection of Black Hole Quasi-Normal Ringdowns: Detection Efficiency and Waveform Parameter Determination in Matched Filtering

    Full text link
    Gravitational radiation from a slightly distorted black hole with ringdown waveform is well understood in general relativity. It provides a probe for direct observation of black holes and determination of their physical parameters, masses and angular momenta (Kerr parameters). For ringdown searches using data of gravitational wave detectors, matched filtering technique is useful. In this paper, we describe studies on problems in matched filtering analysis in realistic gravitational wave searches using observational data. Above all, we focus on template constructions, matches or signal-to-noise ratios (SNRs), detection probabilities for Galactic events, and accuracies in evaluation of waveform parameters or black hole hairs. We have performed matched filtering analysis for artificial ringdown signals which are generated with Monte-Carlo technique and injected into the TAMA300 observational data. It is shown that with TAMA300 sensitivity, the detection probability for Galactic ringdown events is about 50% for black holes of masses greater than 20M20 M_{\odot} with SNR >10> 10. The accuracies in waveform parameter estimations are found to be consistent with the template spacings, and resolutions for black hole masses and the Kerr parameters are evaluated as a few % and 40\sim 40 %, respectively. They can be improved up to <0.9< 0.9 % and <24< 24 % for events of SNR10{\rm SNR} \ge 10 by using fine-meshed template bank in the hierarchical search strategy.Comment: 10 pages, 10 figure

    Mechanical quality factor of a sapphire fiber at cryogenic temperatures

    Get PDF
    A mechanical quality factor of 1.1×1071.1 \times 10^{7} was obtained for the 199 Hz bending vibrational mode in a monocrystalline sapphire fiber at 6 K. Consequently, we confirm that pendulum thermal noise of cryogenic mirrors used for gravitational wave detectors can be reduced by the sapphire fiber suspension.Comment: To be published to Physiscs Letters A. Number of pages: 10 Number of figures: 5 Number of tables:
    corecore