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Based on the generalized Ginzburg–Landau theory, chiral phase transition is discussed in the presence 
of magnetic field. Considering the chiral density wave we show that chiral anomaly gives rise to an 
inhomogeneous chiral phase for nonzero quark-number chemical potential. Novel Lifshitz point appears 
on the vanishing chemical potential line, which may be directly explored by the lattice QCD simulation.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

One of the recent developments in the studies of the QCD phase 
diagram is a possible formation of inhomogeneous chiral phases, 
which may have various implications on high-energy heavy-ion 
collisions or compact stars [1]. They are specified by the spatially 
inhomogeneous chiral condensates and quite similar to FFLO state 
in superconductivity [2] or the textured phase in magnetism [3]. 
Similar subject has been also discussed in the context of color su-
perconductivity [4]. Considering spatial modulation of the q̄q con-
densates in quark matter, they take form,

〈ψ̄ψ〉 + i〈ψ̄ iγ5τ3ψ〉 ≡ �(x)exp (iθ(x)) , (1)

within SU(2)L × SU(2)R chiral symmetry, where state is the eigen-
state of the electromagnetic charge. Various types of the conden-
sates can be considered: two kinds of one-dimensional order are 
well known, in 1 + 3 dimensions, within the Nambu–Jona–Lasinio 
(NJL) model: one is called dual chiral density wave (DCDW) charac-
terized by the uniform amplitude � and θ = q ·x [5], and the other 
is called real kink crystal (RKC) by the spatially periodic function 
� without θ [6]. These configurations can be also obtained by em-
bedding the Hartree–Fock solutions in the 1 + 1 dimensional mod-
els; the general form of the condensates has been found through 
the studies of the phase structure of the NJL2 model or Gross–
Neveu (GN) model [7]. Similar subject has been also discussed in 
quarkyonic matter [8].
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In this Letter we consider the DCDW-type configuration spec-
ified by �(x) and θ(x). Non-vanishing � implies spontaneous 
symmetry breaking (SSB) of chiral symmetry. Then we can eas-
ily observe that the DCDW state can be described by operating 
the local chiral rotation with the chiral angle θ(x), UDCDW(θ(x)) =
exp

[
i
∫

θ(x)A0
3(x)d3x

]
, on the quark matter with the conden-

sate � = 〈ψ̄ψ〉, |DCDW〉 = UDCDW|QM; �〉, where Aμ
3 (x) is the 

isospin 3-rd component of the axial-vector current. Consider the 
Dirac Hamiltonian, H0

D = −iα · ∇ + γ 0m(x), where we assume 
that the mass function m(x) is given by the scalar condensate, 
m(x) = −2G�(x) as in the NJL-like models, L = ψ̄(i/∂ − mc)ψ +
G(ψ̄ψ)2 + . . . . Applying UDCDW on the Hamiltonian, we find the 
effective one in the DCDW state,

H D = U †
DCDW H0

D UDCDW

= −iα · ∇ + γ 0
[

mc + 1 + γ5τ3

2
M(x)

+ 1 − γ5τ3

2
M∗(x)

]
(2)

with M(x) = m(x) exp(iθ(x)). The phase degree of freedom θ(x)

or the complex order parameter M(x) then gives rise to impor-
tant features. Differently from the chiral limit mc = 0, the ansatz 
(1) does not give a self-consistent solution of Eqs. (1) and (2)
by putting θ(x) = q · x. The ground state is no more degenerate 
and the pionic mode described by θ(x) gets a finite mass m∗

π
of O (140 MeV), which should be compared with the wave vec-
tor q. Thus it becomes important near the Lifshitz point, while it 
should be negligible in the well-developed phase [9]. In the follow-
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ing we first consider the chiral limit to clarify our idea, and will 
give some comments separately. The 1 + 1 dimensional version of 
DCDW, called chiral spiral, has been studied in Ref. [7], where chi-
ral anomaly and the nesting effect play important roles to establish 
chiral spiral: chiral anomaly gives baryon density as ρB = μ/π for 
chemical potential μ, and the nesting effect q = 2μ [7]. In par-
ticular it should be interesting to observe the latter relation is 
similar to the one in charge density wave or spin density wave in 
quasi-one dimensional system in condensed matter physics [10]. 
Consequently it has been shown that the chiral spiral is the most 
favorite configuration among various form of the condensate [7]. 
In 1 + 3 dimensions anomalous relation ρB = μ/π becomes irrel-
evant and the nesting effect becomes incomplete. However, it has 
been shown that DCDW appears in the limited region of chemical 
potential [5].

Recently the chiral transition or deconfinement transition has 
attracted much attention in the presence of the magnetic field. The 
magnetic field is familiar in QCD through phenomena of compact 
stars [11] or high-energy heavy-ion collisions [12]. Theoretically, 
SSB has been shown to be enhanced by the magnetic effect, some-
times called magnetic catalysis, and the chiral magnetic effect has 
been another interesting subject [12]. The lattice QCD simulations 
have started to explore the chiral phase digram on the temperature 
(T )-magnetic field (B) plane [13]. One of the great advantages may 
be then that it is free from the sign problem on this plane. The in-
homogeneous chiral phase has been also discussed in the presence 
of the magnetic field [14,15].

In this letter we discuss some topological aspects of DCDW in 
the presence of the uniform magnetic field B, and explore the crit-
ical point in the μ − T − B space. Since the chiral condensates 
couple with the magnetic field in the DCDW state, one need a 
careful treatment in the evaluation of physical quantities; chiral 
anomaly may play an important role in this context. The energy 
levels of quarks are discretized in the plane perpendicular to the 
magnetic field to produce the Landau levels, and each level has 
twofold degeneracy with respect to the spin degree of freedom in 
the absence of DCDW, except the lowest Landau level (LLL). Once 
DCDW is taken into account the spectrum is modified by the chi-
ral condensates. Quarks in LLL then behave like one dimensional 
gas to exhibit a peculiar energy spectrum [5]. Since the effect of 
chiral anomaly has already discussed in the inhomogeneous chiral 
condensates in 1 + 1 dimensions [7], one may expect a manifes-
tation of chiral anomaly in the DCDW state in the presence of the 
magnetic field.

Here we demonstrate it by using the NJL-like model in the 
mean-field approximation. Consider the Dirac operator,

H D = α · P + γ 0
[

1 + γ5τ3

2
M(x) + 1 − γ5τ3

2
M∗(x)

]
(3)

with the covariant derivative P = −i∇ + Q A, where A is the elec-
tromagnetic vector potential and Q = diag(2/3e, −1/3e) is the 
charge matrix. We take the direction of the magnetic field B along 
z axis. Consider for a while a single flavor without color degree of 
freedom by putting τ3 = 1 (u quarks), Q = ẽ > 0 and Nc = 1, and 
take a generic form of θ(x). Changing the basis by the Weinberg 
transformation (local chiral U (1)), ψ → ψW = exp(iγ5τ3θ(x)/2)ψ , 
the Dirac operator can be written as

H̃ D = α · P + γ0m(x) − γ0γ5γ∇θ(x)/2. (4)

Considering the flavor symmetric quark matter, μu = μd(≡ μ), the 
quark number then can be generally given as

〈N̂〉 = −1

2
ηH +

∑
k

sign(λk) [θ(λk)nF (λk − μ)

+ θ(−λk)(1 − nF (λk − μ))] , (5)

where λk is the eigenvalue of H D and nF (ω) = (1 + eω/T )−1 [16]. 
The first term is called the Atiyah–Patodi–Singer η invariant [17],

ηH = lim
s→0+ηH (s), ηH (s) =

∑
k

sign(λk)|λk|−s (6)

and measures the extent of spectral asymmetry about zero. We shall 
see that it is a topological quantity for the case, |∇θ(x)/m(x)| � 1, 
and closely related to chiral anomaly. The second one is the stan-
dard expression given by the Fermi–Dirac distribution function. 
Using the Mellin transform, ηH (s) can be written as

ηH (s) = 1

π
cos

( sπ

2

) ∞∫
0

dωω−s
∫

d3xtr [R E(x, iω)]

+ c.c., (7)

where R E is the Euclidean resolvent,

R E(x, iω) ≡ 〈x

∣∣∣∣ 1

H̃ D − iω

∣∣∣∣x〉 = 〈x
∣∣γ0 S(iω)

∣∣ x〉, (8)

with the propagator, S(iω), S−1(iω) = S−1
A (iω) + δS with

〈x |δS|y〉 = γ5γ · ∇θ(x)/2δ(x − y). S A is the Green’s function in the 
presence of the magnetic field without DCDW. For slowly vary-
ing θ(x), we can apply the adiabatic method of Goldstone and 
Wilczek [19]. We can approximate m(x) = m + . . . in the lowest 
order. Writing S A(x, y) = exp(iẽ

∫ x
y dx · A) S̃ A(x − y), the Fourier 

transform of S̃ A(x − y) can be decomposed over the Landau lev-
els [18],

S̃ A(k) = ie−k2⊥/(|ẽB|)
∞∑

n=0

(−1)n Dn(ẽB,k)

(k0)2 − (k3)2 − m2 − 2|ẽB|n , (9)

with the denominator,

Dn(ẽB,k) = (k0γ
0 − k3γ 3 + m)

[
P−L0

n (u) −P+L0
n−1 (u)

]
+ 4(k1γ 1 + k2γ 2)L1

n−1 (u) , (10)

with u = 2k2⊥/|ẽB|, where P± = (1 ± iγ 1γ 2 sign(ẽB)) is the spin 
projection operator, and Lα

n (x) the generalized Laguerre polyno-
mial. Expanding S̃(iω) around S̃ A , S̃(iω) = S̃ A(iω) − S̃ A(iω)δS S̃ A ×
(iω) + . . . , we have

tr R E(x, iω) = −ẽ/(4π)m2/(m2 + ω2)3/2B · ∇θ(x) + . . . . (11)

There are two remarks in order: only LLL contributes and the result 
includes only the inner product of B and ∇θ . Substituting it into 
Eq. (7) we find

ηH = lim
s→0

ηH (s) = − ẽ

2π2

∫
d3xB · ∇θ(x) + . . . . (12)

Thus the quark-number density can be written as

ρanom
B = ẽ

4π2
B · ∇θ(x) + . . . . (13)

This formula is the same as the one given by Son and Stephanov 
by gauging the Wess–Zumino–Witten action [20]. For d quarks 
with τ3 = −1 and ẽ < 0, ẽ in Eq. (13) is replaced by |ẽ|. Hence 
the coefficient is always positive for both flavors, τ3 = ±1. Thus 
the anomalous quark-number density can be written as ρanom

B =∑
f =u,d |e f |/(4π2)B · ∇θ(x) + . . . , with eu = 2/3e and ed = −1/3e, 

when the flavor degree of freedom is explicitly written. Thus we 
find that the leading term in ηH originates from chiral anomaly 
and model independent, while other terms are model dependent. 
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Note that our result only comes from the non-vanishing magnetic 
field and is irrespective of its strength. Here it is interesting to 
observe that ηH is independent of the dynamical mass m, which 
is one of the remarkable features of chiral anomaly. It should be 
worth mentioning that the anomalous baryon number has been 
evaluated in the chiral bag model for nucleon [21]: quarks inside 
the bag exhibit the spectral asymmetry, and the baryon number is 
then given by the sum of the quarks, skyrmion and the anoma-
lous baryon number to be one. Since λk changes its sign under the 
C T transformation, ψ → iγ0γ5ψ , λk(M) → −λk(M∗), we can see 
ηH always vanishes for real order parameter: the spectrum of the 
Dirac operator is symmetric about the zero eigenvalue for M ∈ R. 
The phase degree of freedom θ(x) is important in our case.

Accordingly, the thermodynamic potential should includes the 
anomalous term besides the usual piece �s , � = �s + �anom. By 
way of the thermodynamic relation, ρanom

B = −∂�anom/∂μ, we 
have

�anom = − ẽμ

4π2

∫
d3xB · ∇θ(x) + . . . . (14)

Note that LLL contributes to �s as well. Taking θ(x) = q · x for 
DCDW, we immediately find from Eq. (14) that the most favorite 
direction of the wave vector q is parallel to B in the weak magnetic 
field. The authors in Ref. [14] have also found that the effective en-
ergy increases by a small deviation from the parallel configuration.

It should be interesting to see that the η invariant or spectral 
asymmetry can be directly evaluated in the closed form without 
recourse to the derivative expansion for the case, B//q. Using the 
Landau gauge, A = (0, Bx, 0), the Dirac operator H D can be reduced 
to 4 × 4 matrix on the basis of the plane wave exp(ik3z + ik2 y)

and the Hermite functions un(x) [14], where n specifies the Lan-
dau levels. However, for the lowest Landau level (LLL), n = 0, H D is 
reduced to 2 × 2 matrix from the property of un(x). Thus the en-
ergy spectrum of the Dirac Hamiltonian then can be obtained,

λn,p,ζ,ε = ε

√(
ζ

√
m2 + k2

3 + q/2

)2

+ 2|ẽB|n,

(n = 1,2, . . .),

λn=0,p,ε = ε

√
m2 + k2

3 + q/2, (LLL), (15)

with ζ = ±1, ε = ±1. Note that the spectrum is the same form 
for both flavors τ3 = ±1. We can immediately see the spectrum is 
symmetric about zero except LLL: LLL exhibits spectral asymmetry 
in the DCDW state. Note that the spectrum becomes symmetric 
in the absence of the magnetic field [5]. The evaluation of ηH is 
straightforward in this case and results in the same value as (12)
in the case of q/2 < m, without any higher-order term [22]. For the 
opposite case, q/2 > m, some portion of LLL with ε = −1 becomes 
positive, so that the spectral asymmetry becomes different from 
Eq. (12); e.g., taking θ(x) = q · x, ηH reads

ηH = |ẽB|
2π

V

[
− q

π
+ (q2 − 4m2)1/2

π

]
. (16)

Note that the second term is a non-topological contribution.
After taking q along B, we can see another implication of chiral 

anomaly. The minimum point of � with respect to |q| is always 
shifted from zero by the linear term. Thus we find the DCDW 
phase is favorite for μ �= 0 in the presence of the magnetic field, 
irrespective of the dynamical mass. In the following we shall re-
veal another interesting aspect of spectral asymmetry around the 
transition point, invoking the generalized Ginzburg–Landau (gGL) 
theory.

Thermodynamic potential can be evaluated by using the energy 
spectrum (15) [14]. Consider the general expansion of the thermo-
dynamic potential density near the transition point [6],

ω(M) = ω(0) + α2

2
|M|2 + α3Im

(
MM ′ ∗)

+ α4a

4
|M|4 + α4b

4

∣∣M ′∣∣2 + . . . (17)

with a shorthand notation M ′ ≡ dM/dz, where we used the prop-
erty that ω(M) is invariant under the global chiral rotation, M →
eiφ M . The coefficients αn are functions of thermodynamic vari-
ables, μ, T , B [6,7]. If the Dirac operator is symmetric by exchang-
ing M(z) and M∗(z), the imaginary terms are absent. DCDW in 
the absence of the magnetic field satisfies this condition, while it 
breaks in the presence of the magnetic field. The Dirac operator is 
no more symmetric for M(z) and M∗(z), and the α3 term is gen-
erated through the spectral asymmetry; since higher Landau levels 
only generate the even power of q in the thermodynamic potential 
due to the q ↔ −q symmetry in the spectrum (15), the odd power 
terms of q may be generated by the spectral asymmetry of LLL. 
We can see that it is closely related to the anomalous term in the 
thermodynamic potential (14). One may worry about the absence 
of the term proportional to q but independent of |M| in Eq. (17), 
since the anomaly term should give such term. However, we can 
see that such terms do not appear near the critical point, where 
the amplitude |M| or mass m becomes vanishingly small. General 
argument for this statement should go as follows: the thermody-
namic potential never depends on q in the limit of |M| = 0 or 
m = 0, where the phase degree of freedom is meaningless. Hence, 
if the thermodynamic potential include the q dependent terms, 
they must be expressed as the product of power functions of M
and its derivative near the transition point. We show how the 
α3 term comes out by evaluating the quark number (5) for LLL, 
which is related to the thermodynamic potential through the ther-
modynamic relation ∂(�/V )/∂μ = −〈N̂/V 〉. First, we consider the 
second term nth in (5),

nth =
∑

f

Nc|e f B|
2π

∞∫
−∞

dEρLLL(E)

[
θ(E)

1 + eβ(E−μ)

− θ(−E)

1 + e−β(E−μ)

]
, (18)

with the density of state, ρLLL(E) = |E − q/2|/π√
(E − q/2)2 − m2. 

It is convenient for our purpose to rewrite nth as an infinite series 
over the Matsubara frequency, ωn = (2n + 1)π T ,

nth = 1

2
ηH −

∑
f

Nc|e f B|
2π

∞∫
−∞

dEρLLL(E)

× T
∞∑

n=0

[
1

E − μ − iωn
+ 1

E − μ + iωn

]
. (19)

Note that the first term apparently cancels the first term in (5), 
but information of the η invariant or the anomaly is not lost and 
still included in the remaining infinite series; actually one can see 
that it is reduced to be the pure anomalous contribution at T = 0, ∑

f Nc|e f B|q/4π2, for q/2 < m and μ < m + q/2. We shall see 
that such a pure anomalous term does not appear for small m. 
Expanding the density of state ρLLL, the remaining infinite series 
cr can be easily evaluated for small m,
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cr =
∑

f

Nc|e f B|q
16π4T

Re
∞∑

n=0

1

(n + 1/2 + iμβ/2π)3
m2

+ O (q3) (20)

up to O (m2), except the q independent terms. We’d like to note 
again here that the thermodynamic potential must not depend on 
q for m = 0, and it should be reasonable for m2q dependence to 
appear as the leading term in the thermodynamic potential. Thus 
we find the relevant term exactly corresponding to the α3 one in 
the gGL expansion (17) (see Eq. (24)).

In the absence of the magnetic field, the spectrum becomes 
symmetric about zero and the coefficient α3(μ, T , 0) vanishes. 
Thus the Lifshitz point, where the inhomogeneous state just ap-
pears, is given by looking at the leading-order contributions [23], 
α2(μ, T , 0) = α4b(μ, T , 0). For further discussion we need a def-
inite model to evaluate αi . Within the NJL model, which may 
be one of the effective models of QCD at low energy scale, 
α4a(μ, T , 0) = α4b(μ, T , 0), so that the Lifshitz point coincides 
with the tricritical point for the chiral transition with the uniform 
condensate [6].

On the other hand, we can see that α3(μ, T , B) becomes non-
vanishing in the presence of the magnetic field. Thus gGL theory 
should bring about qualitatively different consequences. Most im-
portant and interesting one may be the appearance of the novel 
Lifshitz point. This point is defined as the tricritical one where the 
two lowest nontrivial coefficients vanish:

α2(μ, T , B) = α3(μ, T , B) = 0, (21)

for given B .1 First we evaluate α2(μ, T , B) in the presence of the 
magnetic field in 1 + 3 dimensions, by using the two-flavor NJL 
model. Since it includes divergence, we need some regularization. 
Applying the proper-time regularization with cutoff �, we have

α2(μ, T , B) = −
∑

f ;m≥0,n

Nc|e f B|
π2

T (2 − δn,0)

× Im

∞∫
�−2

dτ

√
π

iτ
eiτ [(ωm+iμ)2+2|e f B|n] + 1

2G
(22)

with the Matsubara frequency, ωm = (2m + 1)π T , where we revive 
the flavor dependence by explicitly using e f =u,d instead of ẽ. In 
particular, for μ = 0, the first term reads

−4Nc

∑
f ;m≥0,n

|e f B|
(2π)2

T
√

πλ−1
m,n�

(
1

2
,
λ2

m,n

�2

)
(23)

with λ2
m,n = ω2

m + 2|e f B|n, where �(a, x) is the incomplete 
Gamma function. For x → ∞, |argx| < 3π/2, it behaves �(a, x) =
e−xxa−1[∑N−1

n=0 (1 −a)n(−x)−n + O (|x|−N)] [24], so that α2 becomes 
finite.

The coefficient α3(μ, T , B) includes no divergence. To evaluate 
α3(μ, T , B) it should be sufficient to consider the LLL contribution,

α3(μ, T , B) = −
∑

f

Nc|e f B|
16π3T

Imψ(1)

(
1

2
+ i

μ

2π T

)
. (24)

since other contributions vanish, where ψ(1) is the trigamma func-
tion. We can easily check α3 → ∑

f Nc|e f B|/(8π2μ) as T → 0, 
which coincides with the discussion given below Eq. (17). Note 

1 The same conditions also hold in 1 + 1 dimensions to give the critical tempera-
ture Tc, Tc = eγ /π with γ being the Euler constant on the line μ = 0 [7].

Fig. 1. Critical temperature (Lifshitz point) on the μ = 0 plane as a function of B . 
The same values are used for the parameters as in Ref. [5]: G�2 = 6.35. The dot-
ted curve is given by using only LLL contribution, which indicates the dimensional 
reduction in large B .

that α3(μ, T , B) ≥ 0. Then α3(μ, T , B) = 0 implies μ = 0: the Lif-
shitz point resides on this plane. Note that this result does not 
depend on the detail of the model, but comes from spectral asym-
metry: vanishing of spectral asymmetry simply means symmetry 
with respect to charge conjugation, which should be trivial in the 
case of μ = 0. In Fig. 1 we present one example of the Lifshitz line 
on the B − T plane, determined by the equation, α2(0, T , B) = 0, 
within the NJL model, for readers to grasp its energy scale. Note 
that the critical temperature increases as B does in this exam-
ple, while the recent lattice QCD simulation has suggested its 
decrease [13] This is one of the controversial problems. It may 
be plausible that thermal fluctuations may become important at 
high-temperature, as suggested in Ref. [25]. If this is the case, we 
must take into account thermal fluctuations beyond the mean-field 
theory. However, our conclusion of the appearance of the Lifshitz 
point on the B − T plane is rather model-independent, reflect-
ing spectral asymmetry, which should be little affected by thermal 
fluctuations.

We have shown that the Lifshitz point for the inhomoge-
neous chiral phase should reside on B − T plane given by μ = 0. 
This conclusion may be model-independent and lead by chiral 
anomaly. A clear evidence may be obtained for small μ, where 
the wave vector is proportional to the strength of the magnetic 
field B and chemical potential μ. For α4a,b(μ, T , B) > 0, the op-
timum values of the amplitude m and wave vector q are de-
termined by the conditions ∂ω/∂m = ∂ω/∂q = 0, and we find 
q = −2α3(μ, T , B)/α4b(μ, T , B). Since α3(μ, T , B) should be pro-
portional to μB , q is as well. The critical line on the μ − T plane, 
where the amplitude vanishes but wave vector necessarily does 
not, is given by the equation,

α2(μ, T , B)α4b(μ, T , B) = 4α2
3(μ, T , B) (25)

for given B . The critical line is then shifted upward from the usual 
chiral transition given by the uniform condensate, α2(μ, T , B) = 0, 
assuming SSB at low T and small μ (see Fig. 2 for example). Since 
μ � 0 region is free from the sign problem, this critical line can be 
examined by the lattice QCD simulation. Note again that our result 
does not require the strong magnetic field.

In the presence of the small current mass mc the chiral transi-
tion becomes cross-over for the usual chiral transition. In the gGL 
expansion (17) the linear terms should be added, α1(M + M∗) with 
α1 ∝ mc . Thus finite q is disfavored due to this term. On the other 
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Fig. 2. Phase diagram in the μ − T plane near the Lifshitz point for (eB)1/2 �
300 MeV, where we approximate α4b(μ, T , B) and α2(μ, T , B) by their values at 
B = 0. The uniform phase with � �= 0 is confined on the μ = 0 axis (bold line). 
Solid line shows the boundary between the DCDW phase and the chiral restored 
phase (� = 0), while dotted line corresponds to the usual chiral transition.

hand, recalling that the α3 term favors finite q, we can see some 
competition between these terms, depending on B and μ. Hence 
there may appear no inhomogeneous phase in the μ = 0 plane, 
and the Lifshitz point is shifted from the μ = 0 plane. In the μ − T
plane one may expect there exists the Lifshitz point and the transi-
tion line for the uniform to nonuniform transition in the presence 
of the magnetic field. These features will be discussed in another 
paper.

Finally we briefly discuss the relation of DCDW with RKC in the 
presence of the magnetic field, leaving full discussion in another 
paper [26]. Considering the hybrid condensate,

M(z) = m

(
2
√

ν

1 + √
ν

)
sn

(
2mz

1 + √
ν

;ν
)

exp(iqz), (26)

we can discuss two phases simultaneously, where sn(x; ν) is the 
Jacobian elliptic function with modulus ν . One can easily check 
this is one of the Hartree–Fock solutions in the 1 + 1 dimensional 

NJL2 model. We can immediately see that the anomalous term 
arises in the thermodynamic potential from the wave vector q even 
in this case. Hence the non-vanishing q is always favorite and pure 
RKC phase never appears in the presence of the magnetic field.
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